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Abstract

Although the standard model for radio pulsars is a rotating magnetized neutron star and the vast majority
(if not all) of pulsars are thought to have appreciable inclination angles between the spin and magnetization
axes, most theoretical papers use simpli"ed "eld models (e.g., aligned spin axis and magnetic dipole axis).
Deutsch long ago gave exact (in vacuo) closed expressions for these inclined "elds (modulo some typos and
oversights), but these expressions were rather clumsy and required extensive hand processing to convert into
ordinary functions of radius and angle for the electromagnetic "elds. Moreover, these expressions were
e!ectively written down by inspection (no details of the derivations given), which leaves the reader with little
physical understanding of where the various electric and magnetic "eld components come from, particularly
near the neutron star surface where many models assume the radio emission is generated. Finally, rather little
analysis of what these "elds implied was given beyond speculation that they could accelerate cosmic rays. As
pulsar models become more sophisticated, it seems important that all researchers use a consistent set of
underlying "elds, which we hope to present here, as well as understand why these "elds are present.

It is also interesting to know what happens to charged particles from the star that move in these "elds.
Close to the star, ambient particles tend to simply E]B drift around the star with the same rotational
velocity as the star itself. But far from the star, charged particles are accelerated away in the wave zone, as was
"rst pointed out by Ostriker and Gunn. We expand their calculations using more general "elds and elucidate
the particle's dynamics accordingly. Very e$cient acceleration is observed even for particles starting at
'103 light-cylinder distances. We also stress the e!ects of a non-zero radial magnetic "eld. Electrons are
accelerated to much higher energies than, say, protons (not to the same energy as when the two cross a "xed
potential drop). We pay particular attention to particles accelerated along the spin axis (particles that might
be involved in jet formation). An important limitation to the present work is the neglect of collective
radiation reaction. Single particle radiation reaction (e.g., Compton scattering of the wave #ux) is not an
accurate estimate of the forces on a plasma. We are working on remedying this limitation. ( 1999 Elsevier
Science B.V. All rights reserved.

PACS: 97.60.Jd; 97.60.Gb
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1. A brief history of radio pulsars

The "rst radio pulsar (then simply `pulsarsa before similar objects radiating in X-rays were
found) was discovered in 1967 and published after some delay [3]. Although the list of known
pulsars is now of the order of 700, the original discoveries are still being observed in detail because
they are among the brightest. New discoveries usually require intensive computer processing to
pull their signals from the noise, and it is correspondingly laborious to study their properties. In
general, pulsars (we will not discuss the X-ray versions, which are thought to radiate by an entirely
di!erent mechanism) are bright at low frequencies (e.g., 400 MHz) and dim at high frequencies
(e.g., 4000 MHz). The pulses typically consist of one or more `componentsa closely packed together
and separated by a very much longer interval of weak to non-detectable emission. At present, the
shortest interval between successive pulses is about 1.5]10~3 s and the longest is about 5 s.
Electrons in the interstellar medium delay the lower frequency parts of the pulse relative to the
higher frequencies, and removing this relative delay (i.e., e!ectively lining up the pulses) yields the
`dispersion measurea, which is simply the line-of-sight path-integrated electron density, which in
turn yields a rough distance estimate. There seems to be little or no observable di!erence between
the fastest and the slowest, which pretty much excludes two of the three usual astronomical
suspects for causing periodicity: orbital motion or physical oscillation in size. The shortest periods
are within a factor of about 2 (or less) of the fastest that a nucleon-degenerate collapsed star
(`neutrona star) can rotate. If the power source is the rotational energy, then one expects and
indeed "nds that the periods of all pulsars are increasing.1 The only (so far) plausible reason for
a tiny (a solar mass within 10 km) dense #ywheel to lose energy is if it is magnetized and is emitting
magnetic dipole radiation. An elementary estimate then gives a magnetic "eld of about 1012 gauss
(G) for the magnetization. The fastest (`milliseconda) pulsars necessarily have much weaker "elds
of about 109 G (if they had the stronger "eld, they would spin down too quickly to hang around to
be observed still spinning that fast). A histogram of numbers versus magnetic "eld suggests
a bimodal distribution clustered about these two values. Why there should be two distinct
preferred magnetic "eld strengths is a lively topic of speculation. `Weak "eld pulsara would
arguably be a better term than `millisecond pulsara, but it is rare for astronomical terminology to
overcome casual usage.

The term `neutron stara is similarly a bit of a misnomer since there are a number of composi-
tional transitions expected with depth, but the usual theoretical estimates have neutrons outnum-
bering protons by about 8 : 1. The main reason is that if the nucleons are resisting gravity by
degeneracy pressure, electrons at the same densities have huge Fermi temperatures, which drive
electron capture by the protons (inverse beta decay) to remove electrons and favor neutrons. One
expected source of neutron stars is in the collapse of the cores of massive stars (one supernova
model) and indeed some young radio pulsars are found inside of some young supernova remnants.
Pulsar ages are estimated from the observed slowing down, PQ , and the usual rule of thumb,
q
!'%

+P/PQ , which for the speci"c case of magnetic dipole radiation is q
!'%

"P/2PQ .
The discovery of a pulsar within the Crab Nebula, generally thought to be the remnant of

a historical supernova in 1054 AD, qualitatively solved the mystery of why continuum optical

1Unless contaminated by external gravitational forces on the neutron star.
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radiation from that nebula is highly polarized and what powers it; evidently a magnetized plasma
#ows from the pulsar (not simply large amplitude electromagnetic waves in vacuo) and accumu-
lates within a conducing shell of ejecta (visible in line emission). This general deductive analysis by
elimination of what pulsars are (rotating magnetized neutron stars) seems broadly consistent with
such observations.

2. Our basic approach

The obvious question (`Why are they emitting radio waves?a) has not yet been answered.
A series of theoretical models have been forwarded, which have either been found to wrong or to be
charitably described as `incompletea. A generic (and non-committal) model would pose that there
are some sort of discharges within the pulsar magnetosphere. We are then seeing these discharges
rotate in and out of view. A serious theoretical problem is that a bright low frequency source from
a tiny object vastly exceeds the black body emissivity at any plausible `temperaturea and the
spectrum is exactly the inverse of a hot black body (falling with frequency instead of rising). The
radiation must then be coherent to begin with and then it must pass through a highly transparent
medium to avoid being thermalized. A simple model having these properties would be discharges
that bunched particles of one sign. At long wavelengths, the bunch radiates intensely as a single
(highly charged) particle and at short wavelengths one eventually gets incoherent radiation from
the individual particles (weaker emission by a factor of N, the number of particles in the bunch).
This behavior is qualitatively just the spectral signature seen. The next alternative is some sort of
maser action excited by counter-streaming in the (putative) discharges. Although we are not
without preferences [4], such details are far beyond the basics we hope to lay out here. Most
phenomenological models start with the assumption that discharges exist, usually posited to be
con"ned to the vicinity of the magnetic poles, where the B "eld is usually taken to be dipolar with
the magnetic axis inclined to the rotation axis.2

Our approach here is to start at the opposite limit, namely assume by contradiction that the
inclined rotator has no discharges, try to "nd such solutions, and hope to "nd a paradoxical
inconsistency. We would then know where discharges are required and why. For example, in the
case of perfect alignment (an attractive theoretical simpli"cation) we already "nd quiescent
solutions with no obvious requirement for discharges other than one-shot transient ones as the
system relaxes to a more stable con"guration. This "nding suggests that inclination is not only
required to produce the `light-housea rotation of the discharges (i.e., the pulses), but is essential for
maintaining the activity to begin with.

Not everyone is happy with this situation, and a few theorists still try to get an aligned rotator to
do something. But in 15 years, not a single researcher in the "eld has come forward and shown how
an inactive solution might be transformed into an active one.

Although our subject of interest is astrophysical in nature, the application closely parallels some
interesting paradoxes in laboratory physics. In classical mechanics, the motions of bodies is

2More complicated "elds are an obvious possibility, but pulsars are so ubiquitous (birthrates + supernova rates) that
we cannot require much beyond the simplest topology.
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essentially trivial until one comes to the rotational motions, which require much more care in
understanding. In the same way, electromagnetism is fairly straightforward even when uniform
motions are added, but when rotation is added, textbook treatments are either non-existent or
sometimes muddled at best [5]. For example, is rotating the observer equivalent to rotating the
system, as it is for uniform translation? (No!) Does anything happen if you rotate a bar magnet
about its axis? If you rotate a conductor and suddenly stop it, will a current #ow? If you magnetize
an object, is it set into rotation? If you stand a conductor in a gravitational "eld, do the conduction
electrons `settlea toward the bottom? Some of these questions may be familiar, some may seem
exotic.

When radio pulsars were discovered in 1967, an intense observational and theoretical e!ort soon
zeroed down on these astrophysical objects as being rotating neutron stars having huge magnetic
"elds [4,6]. We are therefore back to one of the above questions, what happens if you rotate
a magnet? [7].

An essential "rst step to understanding neutron star electrodynamics is an understanding of
how the (assumed) conducting interior adjusts to rotation through its own magnetic "eld.
Although the rotating magnetized neutron star model for pulsars seems a stable paradigm, the
theoretical situation has been one of ups and downs, with very plausible models having proven to
be unphysical. Given that three decades have passed without a theoretical breakthrough, it seems
likely that enough di!erent things are happening in connection with the generation of (highly
coherent) radio emission from pulsars that it is correspondingly unlikely that one can simply guess
at what is happening. Accordingly, it seems implausible that we can understand how pulsars
function without "rst gaining some elementary levels of understanding of what should be happen-
ing in their vicinity.

3. Gravitating and rotating conductors

For rotating magnetized neutron starts, the Lorentz forces (on an electron, say) are huge
compared to the gravitational forces, which in turn are usually orders of magnitude larger than the
centrifugal forces.3 Nevertheless, these inertial forces are often dominant.

A star such as our Sun can be regarded as a fully ionized plasma and hence an excellent
conductor. The simplest model for a conductor is the free electron model. If we apply this model to
the Sun, it would predict that the free electrons would attempt to `falla to the center of the Sun.
Such motion would produce a radial charge-separation electric "eld that in steady state would
have the value

E
r
"!m

e
g/DeD (wrong) . (1)

In other words, the Sun would become negatively charged to keep the electrons from falling
inwards against gravity. In fact, this estimate has the wrong sign and is several orders of magnitude

3Even near the so-called light cylinder distance, where it is often erroneously assumed that particles would `havea to
rotate at the speed of light were they not slung away by the centrifugal force.
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too small! Both the ions (mainly protons) and the electrons are better approximated as being gases,
and under thermal equilibrium the electrons move much faster than the ions. A better approxima-
tion would be to assume that the electrons are essentially unbound gravitationally, in which case
the Sun needs a positive charge to retain them (or will become positively charged by their loss). The
situation becomes more extreme when we examine electron-degenerate stars (white dwarfs) and
nucleon-degenerate ones (neutron stars) where the large electron Fermi energies require even larger
stellar charges to retain the electrons.

If we now examine rotating stellar objects, we run into some semantical ambiguity of how we
would exert a torque on either gas. It is easier to return to the laboratory scale where we can
directly rotate (say) a metal sphere. Now the torques are distributed among the ions by the lattice
forces. But in the free electron model the electrons do not see the lattice forces, and therefore the
lattice will try to rotate through the electrons. The resultant ion current will produce a time-
dependent (growing) magnetic "eld, and the accompanying induction electric "eld will then oppose
the lattice rotation and transfer some of the torque to the electrons. Once a new steady state
rotation has been achieved, a weak magnetic "eld of order

X+u
#
"eB/m

e
(2)

is roughly su$cient to tie the electrons to the lattice.4 For the fastest known pulsar
(X+4000 rad/s), this "eld would be only about 2]10~4 G. Ohmic dissipation would eventually
remove this "eld (and any need for it, since the particles are now all corotating).

The point here is to emphasize that self-gravitation and rotation make for some deviations from
our classic views of `classicala bulk objects. Adding magnetic "elds makes for even more profound
changes.

3.1. Rotating spherical conductor in B xeld

We now consider the case of a rotating spherical conductor in B "eld. The simplest symmetry is
for the rotation axis to parallel a uniform external magnetic "eld. Although we assume the sphere
to be conducting, the usual boundary condition at the surface,

U"const. , (3)

is incorrect. If the potential on the surface were constant (as appropriate for stationary conductors),
the electric "eld inside would be identically zero (the desired result for a stationary conductor). But
the magnetic "eld inside a rotating conductor provides an unbalanced Lorentz force

F"$eV]B , (4)

where

V"X]r (5)

4To our knowledge this toy problem has not been worked out exactly.
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is the rotational velocity.5 The consequence of this force is to separate the charges axially. Such
a charge separation will clearly lead to an electric "eld of some sort. This e!ect is well-known in
plasma physics, where it is usually termed the MHD (MagnetoHydroDynamic) condition and
written variously as

E#V]B"0 (6)

or

V"

E]B
B2

. (7)

The latter is more general since it is always possible provided that E(cB, while the "rst is only
possible if additionally E )B"0.

The appearance of this electric "eld is perplexing to some physicists given that there is no
induction, which is exactly correct. The resultant electric "elds are indeed curl free. The short
answer is that the conduction charges need to see both a B and an E "eld such that the E]B
particle drift exactly matches the rotation rate of the star (we are largely repeating arguments
in [4, Section 4.2]). If this electric "eld were absent, the Lorentz force on the corotating
charges would move all the electrons outward (for the choice B )X'0) and all the ions in-
ward, which would immediately create an electric "eld. But one does not need to follow the
time-dependent particle dynamics, and their consequences, one simply requires of the interior
that it ends up with E )B"0, one MHD condition. If we hook a stationary wire between the pole
and equator of this rotating sphere, current will #ow; this is simply a (fat) Faraday disk. Some
textbooks even "nesse this point (e.g., [8]) by imagining that one can transform into a rotating
frame where the sphere is stationary but now the wire is moving in the magnetic "eld and `cuttinga
lines of force.6

If the magnet were an insulator (which is entirely possible in the laboratory, since magnet-
ization arises from electron spin and not from electron conduction) the Lorentz force would be
zero to "rst order on the neutral constituents. In their frame of reference the atoms would
see an electric "eld which would cause some "nite polarization and the latter would produce
some (much weaker) electric "eld to be seen in the stationary frame. In the case of pulsars, even
this e!ect would probably produce interestingly strong electric "elds, but we will follow conven-
tion and simply assume the neutron star to be conducting, as it is expected to be from other
arguments.

Altogether then, the Lorentz forces do the `inducinga, and the terminology comes from the
`unipolar inductora: the battery-like action of a metal disk rotating in an external magnetic "eld
when the rim is shorted to the center, as shown in Fig. 1. Actually, there is a deep irony here because
this rotating disk was apparently "rst suggested [10] by Faraday (and sometimes called a `Faraday
diska), presumably as an example of Faraday's law of induction!

5We generally reserve upper case for bulk quantities and lower case for particle attributes, unless esthetically
distracting (e.g., coordinates).

6A somewhat dangerous assumption given that the rotating frame is non-inertial [9].
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Fig. 1. Faraday disk, a rotating disk in a magnetic "eld develops a potential between the axis and the periphery, an
elementary dynamo.

In the case of radio pulsars, the magnetic "elds we will be interested in are estimated to be of the
order of 1012G. This estimate originally came from the assumption that the magnetic "eld is
orthogonal and that the neutron star (an object nominally of about 1.4 solar masses and about
10km radius) is slowing down owing to magnetic dipole radiation as if radiating into a vacuum [2].
The reader can simply regard such numbers as scaling estimates, quite apart from detailed
justi"cation. In any event the now-standard estimate } for all practical purposes the dexnition }
is [11]

B"3.2]1019(PPQ ) 1
2 G (8)

for the pulsar period P in seconds, with PQ being the dimensionless slowing down rate. Pulsars have
periods in a wide range but mostly near one second, while the characteristic slowing down time is
a few millions of years and hence a representative PQ +10~15 giving a magnetic "eld of about
1012G. Consequently, we will operate in a quite di!erent parameter space from that of rotating
magnets in the laboratory! Note also that the age of the galaxy itself is more like 1010 years, and
therefore there must be a very large number of no-longer-seen pulsars.

4. Fields in the aligned case

First we discuss the vacuum electrodynamic "elds expected about rotating magnetized stars and
touch on some of the non-vacuum cases, where the neutron star is cloaked with (non neutral)
plasma.

The model for the interior magnetic "eld is irrelevant to the (assumed dipolar) external "eld.
A simple choice is to simply imagine that there is a point dipole at the center of the star.
Alternatively, the interior "eld could be modeled as being uniform, although no one expects that
either model would hold for an actual pulsar. Neither model should make any di!erence to what is
happening in the exterior around the star, but certain points are easiest made in one or the other
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picture. If a central dipole is aligned with the rotation axis, the "elds are simply

B
r
"2B

0

a3

r3
cos h (all r) , (9)

Bh"B
0

a3

r3
sin h (all r) , (10)

where a is the stellar radius, and for positive B
0

the magnetic "eld points up out of the North
(h"0) pole, exactly opposite to the magnetic "eld of the Earth. Rotation of the conducting star
through its own magnetic "eld (or perhaps less confusing, the rotation of each electron through the
magnetic "eld created by all the other electrons) forms in essence a `fata Faraday disk. Here, B

0
is

the "eld strength at the equator, which is also that estimated7 in Eq. (8).

4.1. The `induceda electric quadrupole

There are a number of ways of solving for the internal electric "elds required to transform the
corotational motion of the particles into E]B drift. One is the observation that in steady state the
magnetic "eld lines must be equipotentials so that the electric "eld has no parallel component with
which to drive currents (again, the so-called MHD condition in plasma physics). This condition can
certainly be imposed on simple models if not necessarily on an active pulsar, where currents would
be expected to circulate. Indeed, the simplest possibility works exactly, namely where the electro-
static potential inside is given by

U"U
0

a
r
sin2 h (inside star) , (11)

where

r"¸ sin2 h (12)

is an equation for dipole magnetic "eld lines, ¸ being the equatorial (maximum) distance of the
magnetic "eld line. Here the scaling requires (as we will establish)

U
0
"B

0
a2X . (13)

Again, B
0
is the equatorial (dipole) magnetic "eld strength, exactly the quantity estimated in Eq. (8).

Here positive X in Eq. (13) corresponds to counter-clockwise rotation as viewed looking down
along the North pole, as is the case for the Earth's rotation. However, positive B

0
is opposite to that

of the Earth but similar to that of Jupiter. These choices of sign (both positive or both negative) are
a popular theoretical choice if it is assumed that radio emission comes from electrons accelerated
over the magnetic polar caps. But this assumption gets us ahead of our discussion.

7 Ironically, many theorists have labored for years under the impression that this estimate corresponded to the polar
magnetic "eld strength!
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It is direct to calculate that the resultant internal electric "elds from the potential in Eq. (11)

E
r
"U

0

a
r2

sin2h (inside) , (14)

Eh"!2U
0

a
r2

sin h cosh (inside) , (15)

which from Eq. (9) and (10) give E )B"0. The interior "elds therefore satisfy our requirement that
they do not accelerate corotating particles.

4.2. Rigid corotation

As a "nal check, let us calculate the drift velocity V
D
,E]B/B2 inside the star. Only the

azimuthal component is nonzero,

(E]B)
(
"U

0
B

0

a4

r5
sin h(1#3 cos2 h) , (16)

and since

B2"B2
0

a6

r6
(4 cos2 h#sin2 h) (17)

we "nd

<
D
"

U
0
r

B
0
a2

sin h"rX sin h (18)

as required for rigid rotation. This exercise is useful for checking that a consistent de"nition of
U

0
has been used (especially with at least one factor of 2 #oating around, namely whether B

0
is the

equatorial or polar magnetic "eld strength).
The di$culty with this solution, which corresponds to a global solution, is the "nite extent of the

star. The required charge density is

o"e
0
$ )E"2U

0
e
0

a
r3

(1!3 cos2 h) , (19)

and the angular distribution is recognized to be the Legendre polynomial P
2
(cos h), characteristic

of a quadrupole distribution. But while it is necessary to have this charge distribution, which would
arise from charge separation inside the conducting star, the solution is not su$cient when the
charge distribution is truncated at the stellar radius, a. The missing charge outside the star is still
required to give E )B"0 inside the star and must be replaced with something else that does just
that. But before resolving that point, we should make one additional point about the internal
charge distribution.

4.3. The required central charge

A quadrupole charge distribution (Eq. (19)) has no net charge, but the 1/r dependence of U in
Eq. (11) requires a monopole moment, in addition to the distributed quadrupole. The value of the
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charge is simply given by integrating E
r
in Eq. (14) over a sphere using Gauss's law which gives

Q"8ne
0
U

0
a/3 , (20)

hence

U
.0/010-%

"

2
3

U
0

a
r

. (21)

The existence of this central charge is without question, although it is often neglected even in some
theoretical papers. But the above evaluation does not explain why this central charge is required.

This required central charge is more explicit if we turn to the alternative internal magnetization
model: a uniform internal magnetic "eld (B

z
"2B

0
). Now E]B corotational drift requires an axial

electric "eld which points toward the axis and increases linearly with axial distance,

Eo"!2XB
0
o (inside) , (22)

corresponding to a uniform internal charge density

o"e
0
$ )E"!4e

0
XB

0
, (23)

which gives (again) the net charge within the volume of the star

Q
1
"!

16n
3

e
0
XB

0
a3"!2Q (inside) . (24)

Now that the magnetic "eld changes from the uniform "eld inside to pure dipole outside, the
associated electric "eld changes from Eq. (22) to Eq. (14).8 Such a transition demands a `surfacea
charge which is

p"e
0
(E%95

r
!E*/5

r
)"3e

0
XB

0
a sin2 h"e

0
XB

0
a[2#(1!3 cos2 h)] . (25)

Integrating this over the whole sphere, we get a required total charge for making the transition to
be

Q
2
"8ne

0
U

0
a"3Q . (26)

Thus, this `surfacea charge proportional to sin2 h can be understood in terms of the sum of
a uniform positive charge (Eq. (26)) and the accompanying quadrupole distribution. These then
cause the star to have an e!ective `centrala charge which is Q"Q

2
#Q

1
and the `internala

quadrupole moment as if it simply had a point dipole at the center as indicated by Eq. (20) in the
model where the magnetic dipole is shrunk to a point at the stellar center.

As a note of clari"cation, the `surfacea charge given in Eq. (25) is di!erent from the usual
de"nition of surface charge since it is required by the transition of uniform to dipolar "eld

8Even though this expression is given as an inside "eld, it is the correct expression for the immediate outside electric
"eld also since the electrostatic potential is directly proportional to the magnetic "eld line function for a rigidly rotating
star.
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con"gurations and cannot be altered. As discussed in the following sections, there will also be the
induced surface charge whose motion is subject to the surface electric "elds, which can (and will) #y
o! the star.

4.4. The total charge of the star

The important point here is that the net internal charge Q of the star is not a free parameter but is
determined by the magnetic dipole "eld and the condition E )B"0 inside the star. If the star is not
charged initially, a neutralizing charge !Q will consequently appears on the surface. This
neutralizing surface charge is again subject to the surface electric "elds, which, as we will show
later, are so strong that no surface charges could be maintained. Then these surface charges
will #y o! the star. If one considers a whole system consisting of the star and its surrounding
plasma, then the surrounding plasma must contain a net amount of charge !Q to ensure charge
neutrality. But nothing said that the star had to be initially neutral, so the net system charge is
actually arbitrary. The casual assumption that the overall system charge be zero probably
contributes to theorists sometimes neglecting the intrinsic internal stellar charge Q. We will discuss
the e!ects of varying total charge on the distribution of plasmas surrounding a star in the following
sections.

4.5. The required external quadrupole

So far we have the elements of a solution, but no complete solution if the quadrupolar charge
distribution is truncated beyond r'a. For a magnet (sometimes called a `terrellaa if in the form of
a sphere) rotated in the laboratory, the rest of the solution is no mystery, it simply corresponds the
above pieces: the central charge and the quadrupolar space charge inside the sphere plus a surface
charge. The surface charge is itself required to be quadrupolar since it replaces the missing external
quadrupole charge distribution plus an arbitrary uniform surface charge (e.g., add !Q if zero total
charge desired).

The requirement for this external quadrupolar charge distribution follows again from the
condition E )B"0 inside the star. Let's just go through the derivation in small steps. At the surface,
we can reinterpret the distributed quadrupole as a vacuum internal quadrupole generated by the
external distributed charge and a vacuum external quadrupole generated by the internal distrib-
uted charge. In other words (here we normalize U

0
a,1 and r"1 is the surface)

sin2 h
r

"

A
r
#

B
r3

(1!3 cos2 h)#Cr2(1!3 cos2 h) , (27)

where the A term is the central monopole, B is the quadrupole potential due to charge separation
inside the star, and C is the vacuum quadrupole potential due to charges external to r (e.g., a surface
charge). What we are trying to determine here is what happens if the third component is absent, but
for the moment we will assume it to be there. The coe$cients A, B, and C are determined by the
condition that the above equation holds and that E )B"0 on the surface (owing to the di!ering
r-dependences, the "elds of each are di!erent). Then we have for the potential at the surface (r"1)

sin2 h"A#B(1!3 cos2 h)#C(1!3 cos2 h) (28)
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or A"2/3 and B#C"1/3. Each electric "eld component has a di!erent dependence on r, but
must give the same electric "eld at r"1, so we can determine the coe$cients by di!erentiating the
potential, Eq. (27) with respect to r and then setting r"1:

!sin2 h"!A!3B(1!3 cos2 h)#2C(1!3 cos2 h) (29)

which again requires A"2/3, but 3B!2C"1/3, hence B"1/5 and C"2/15.
We are now prepared to give the resultant electric potential for the case that the external

distributed charge is missing. For example, if the rotation were of a spherical magnet in the
laboratory, the distributed charge outside of the surface would simply be replaced by a quadru-
polar surface charge that gave the same Cr2(1!3 cos2 h) potential inside. Then at every point,
E )B"0 inside the magnet.

If instead we go to the case of a neutron star with nominal 1012G "eld, radius of 10 km, and
a rotation rate of 6 rad/s, the induced electrostatic "elds are of the order of 6]1012 V/m. Not only
is this a huge "eld, but we can see that an electron would be accelerated to relativistic energies over
a few microns. Consequently, it has become common to assume that the work function of the
neutron star is e!ectively zero, whereas for laboratory parameters the work function of a rotating
terrella is e!ectively in"nite. A neutron star would then di!er fundamentally from the Earth in that
there is no `grounda available. The neutron star has just the net charge Q and no other charges can
be stored on it to vary that number. And no surface charge can be maintained! How then can we
have E )B"0 inside without a surface charge? Clearly we then need an external quadrupolar space
charge around the star.

4.6. Surface charge redistribution: the electrosphere

One way to provide the external quadrupole is simply to imagine that the internal charge
separation simply extends beyond the star and to in"nity. Now instead of the surface charge
(terrella solution) we simply have the quadrupole charge separation density everywhere, even
where there is no conductor to supply it. Mathematically this solution is "ne but not physically. If
we imagine the neutron star to be spun up, with the surface charge appearing brie#y on the surface
before being torn o!,9 what would we expect? Again with our sign convention, positive XB

0
corresponds to negative particles over the poles and positive particles in the equatorial plane. The
positive particles would then appear at the equator and would have no place to go beyond
following, to "rst order, the magnetic "eld lines. Since these lines are tightly closed, the positive
particles could depart no further than about half a radius away from the surface. The quadrupole
charge changes sign at cos2 h"1/3 or sin2 h"2/3 and from the dipolar "eld line equation Eq. (12)
we have ¸"3/2. The negative particles also move on closed magnetic "eld lines (except from the
exact poles) and we will now show that there is a trapping region right above the poles. It is easiest
to locate the trapping zone in the case where we start with the surface charge on the star, even if this
will not be the "nal state. Then the power law dependence on C in Eq. (27) above to r~3 gives the

9We will show that the electric "elds act to pull surface charge o! regardless of sign.
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external "eld from the surface charge, and the potential is then

U"

2
3r

#

(1!3 cos2 h)
3r3

. (30)

We then satisfy E )B"0 inside the star, but now there is a trapping region starting at r"aJ3
above the pole (where RU/Rr"0) and arching to the surface. This trapping region is created by the
net charge that the neutron star has, which is positive and attracts the electrons back to the star.
However, the electrons are accelerated o! the star by the quadrupole "eld, so they simply move out
until the quadrupole "eld dies o! su$ciently with distance (much faster than the monopole, of
course). Thus any negative charges that might be introduced into the polar regions, or any negative
charges that might escape the surface charge, will simply be trapped. The natural expectation of
single charged plasma trapping is that the plasma forms a non-neutral plasma, a topic of extensive
research in the laboratory [12}14]. Determining the exact distribution of such plasma is, however,
a somewhat di$cult task. But "lling only portions of the volume about the neutron star with
charge suggests the generic name `electrospherea. Early pulsar theory obsessed with the quadrupo-
lar electric "eld `driving the electrons awaya, and neglect of the central positive charge guaranteed
that the trapping feature would be missed. In the same way, the equatorial plane is also a locus of
E )B"0 and in this case positive particles would accumulate here (repulsion by the central charge
driving them to the most distance points on their magnetic "eld lines). In general, non neutral
plasmas collect initially at loci of E )B"0.

4.7. Earnshaw's theorem

A standard proof in electrostatics texts is that one cannot trap particles in a static electric "eld
because in the space outside of point charge, we have

+2U"0 (31)

and such a U cannot have a local maxima or minima. But this theorem is not very robust, given
that it fails if the slightest assumption is changed, such as adding other forces or introducing time
dependence. Thus an electron is trapped in a classical atom (centrifugal force), in a Penning trap
(magnetic force), in a Paul trap (oscillating electric "elds), and in an aligned rotating magnetized
neutron star (huge magnetic "elds). The electrostatic trapping is only along the magnetic "eld lines,
but the magnetic "eld itself inhibits escape in the tangential directions.

4.8. The totally xlled magnetosphere (TFM ) solution

Historically, this complexity was entirely missed and it was originally proposed [15] that the
quadrupolar charge density inside the star simply continued as such to `in"nitya. The putative
source of the external space charge was again particles from the surface. Unfortunately the
apparent advantages of this assumption outweighed the de"ciencies, because then this external
quadrupolar charge distribution would have to rigidly corotate with the star (that was the
boundary condition to begin with) and therefore at a distance c/X a physically impossible region
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would be encountered beyond which the plasma particles would have to rotate faster than the
speed of light. This distance was interpreted as the transition to a centrifugally driven wind-zone,
which is evident in terminology that labels this distance as being the `light-cylinder distancea,
`cylindera referring to locus where centrifugal force would become arbitrarily large in relation to
the spin axis. Since a wind would drain particles from the surroundings, mainly on magnetic "eld
lines leading to the polar regions, it was additionally assumed that charges would have to be
accelerated from the poles to replace those lost. Much of the subsequent work concentrated on how
such a polar acceleration region might produce coherent radio emission (the radio luminosity of
radio pulsars being far too large to be incoherent and yet be emitted from such small areas of
a neutron star). This diversion of e!ort away from fundamentals helped the model persist, and even
today a few workers still struggle to try to make it work [16}18]. The fact that the particles drained
from the polar regions would all be electrons (so assumed because accelerated electrons radiate
most easily), and therefore that charge conservation should be violated, was regarded as a technical
detail to somehow be "xed in this otherwise promising model. To a newcomer, it might seem
astonishing that } in models for an actual radio pulsar, which surely must be an arcing, discharging,
electromagnetic monster } something as comparatively benign in e!ect as centrifugal forces were
imagined to be the dominant ones!

4.9. Numerical solutions

The electrosphere would generically be a dome of (negative) charge over each magnetic pole
and a torus of (positive) charge around the equatorial zone. If these zones were to be expanded
as much as possible, one should asymptotically approximate the entirely "lled magnetosphere
solution. The dome and torus con"guration has been shown in numerical simulations [7] and
reproduced in Fig. 2, which shows the case in which the net charge in the electrosphere is zero
(thus the total system charge is again Q). The simulation was intentionally unsophisticated,
with the surface charge replaced by a series of charged rings on the surface, which were re-
leased one at a time and allowed to "nd an equilibrium position. As more rings are released,
the surface charge has to be readjusted to keep E )B"0 inside the star. But as more
charge accumulates outside, the electrosphere itself starts to remove the need for a surface charge
and ultimately the simulation terminates naturally when there is no more surface charge to be
removed.

As we have been discussing here, it is fairly obvious that `startinga the star with a surface charge
and then releasing it will result in the positive particles from the equatorial zone simply popping
out a short distance and being trapped by the intense closed magnetic "eld lines there. If the
electrons are approximated as following magnetic "eld lines, there is only one "eld line on which
they could escape, but that point is moot because there is a trapping region for electrons directly
above the polar caps, which they occupy to form the domes. The build-up of the dome and torus
are shown in Fig. 3. The electrons are attracted by the positive intrinsic charge of the star but
repelled by the rotationally induced quadrupole electric "eld, which would drive them o! the
surface to begin with. But the monopolar electric "eld component will always dominate at some
"nite distance, thus they cannot escape. And the positive particles, which are repelled from the star,
are trapped on the tightly closed equatorial "eld lines. The plasma density is far too low
(+1011 cm~3 [4]) for interchange instabilities to grow. Escape seems only possible if the total
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Fig. 2. Non neutral space charge distribution about an aligned rotator, as originally calculated [7].

Fig. 3. Formation of the disk/torus electrosphere. The "rst "gure is after one step, the second after 25 steps, and the "nal
"gure has terminated after 164 steps.

system charge is somehow driven to zero, which corresponds approximately to a con"guration
with all dome (extending to in"nity) and virtually no torus.

4.10. Pair production

Even before the discovery of pulsars, it was realized [19] that gamma rays could convert into
electron}positron pairs in strong magnetic "elds. In active pulsars (as opposed to these idealized
models) it is entirely possible that such pair production is essential in providing current carriers to
power the activity. The important constraint has been that particles were assumed to be available
only from the surface (positive particles would then be ions). If pair production e!ectively
creates particles in vacuum regions (positive particles would then be positrons) the surface-origin
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constraint is lifted. Such a source of ionization would surely modify the dome/torus con"gurations
[20]. The process usually envisioned is energetic particles radiating curvature radiation to produce
the gamma rays, which then convert to provide more energetic particles. In some models the
successive particles are proportionately less energetic and in others an electric "eld maintains their
energy. However, such a process is tightly localized to the vicinity of the neutron star because (1) it
requires an intense magnetic "eld and the dipole "elds weaken rapidly (1/r3) with distance, and (2)
because the surfaces of the dome and torus are E )B"0 surfaces, so any accelerating electric "eld
will vanish if the system tries to "ll up and asymptotically approach the TFM solution. Conse-
quently one expects modi"cation of the dome/torus con"guration, but it does not seem a plausible
mechanism to drive activity in the aligned model [20].

Given that these non-neutral plasma distributions may be unfamiliar, it is probably worthwhile
to go over Fig. 2 in some detail. First, notice that the dome and torus truncate abruptly as is evident
even in this coarse discrete-particle simulation. These vacuum-to-plasma discontinuities are typical
of non-neutral plasmas and contrast sharply with the tendency of quasi-neutral plasmas to "ll all
space by ambipolar di!usion along magnetic "eld lines. The charge density does not feather o!
smoothly to zero. Notice that the magnetic "eld lines (dashed) cut across these surfaces; it is not
necessary that the "eld lines parallel the surfaces as is a possibility for stable density discontinuities
in the quasi-neutral case. Next the decline in density of the dome is evident with increasing height.
The charge distribution here is exactly that same as for the TFM (totally "lled magnetopause)
solution Eq. (19) but truncated at the discontinuities. The magnetic "eld lines have to be
equipotentials where the plasma `shortsa them electrically to the surface, and the dome plasma
must also rigidly corotate with the star. The equipotential lines are the solid ones and smoothly
joint on to the magnetic "eld lines (dashed) inside the dome, as required, but outside they become
more like spherical shells about the center of the star indicating the dominance of the central
charge. The density should increase somewhat toward the axis, but our representation in terms of
charged rings gives the opposite appearance, since the rings e!ectively represent wedges of charge
density. The surrounding vacuum, which "lls essentially all space is labeled `Ha after a work by
Holloway [21], wherein he pointed out that if one removed equatorial positive particles from the
TFM solution on magnetic "eld lines leading to the (assumed negative) polar regions, there is no
plausible way that they could be replaced and therefore a gap would have to form.10 It turns out
that some solutions are all gap! The torus is a bit more complicated and one can see what appears
to be a dark band in the middle of it. What is happening here is that the magnetic "eld lines leading
to the star only cut through part of the torus, and again here the charge density has to be the same
as the TFM solution and the motion has to be corotation. But the outer parts are on magnetic "eld
lines that pass through vacuum before reaching the surface and these are `open-circuiteda.
Consequently, the plasma on the open-circuited magnetic "eld lines does not match that of the
TFM solution, and the plasma here rotates somewhat faster than the star itself. Far from being
a nuisance, this behavior is essential! If both the dome and torus had the same density as the TFM
solution, then the internal quadrupole moment that they would generate would be less than that

10Holloway's argument is misunderstood in numerous recent publications: it would be invalid if any ionization
process were present in the gap, but one can "nd Holloway cited as justixcation for gaps having just such action taking
place.
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given by the TFM solution and the latter provides exactly that required for E )B"0 inside of the
star. We have thrown e!ectively away both positive and negative particles from the TFM solution
and the quadrupole moment must fall, unless there is an additional charge density added
somewhere (here, the super-rotating part of the torus). Thus the system automatically "nds
a somewhat sophisticated solution.

On the other hand, the trapping has counter-intuitive properties. For example, a stray negative
charge introduced near to the negative dome is `attracteda to the dome (actually it is attracted to
the central positive charge more than it is repelled by the dome electrons). Ditto for positive
particles above the torus. Moreover, these charged volumes cannot generally be neutralized. If
a positive charge were introduced into the negative dome, it would see no macroscopic parallel
electric "eld in "rst order, but in second order, the electrons have to be held up against gravity, so
there will be a weak parallel electric "eld present to do this. But the very same "eld will accelerate
the positive charge to the surface. Alternatively, the positive particle could have enough velocity to
drift up out of the dome in which case it would be accelerated to the torus. The dome cannot be
`neutralizeda.

4.11. Image charge

The way conductivity is handled here di!ers slightly from the standard textbook application in
inertial systems. There the conductor is simply taken to be an equipotential (E"0 inside). For our
rotating systems, we have instead E )B"0 inside. Given those conditions, in either system the
introduction of a new test charge would produce image charges to appear on the surfaces of the
conductors. But there is no discussion of image charges insofar as the charges in the dome and
torus are concerned. The di!erence is in the assumption that charges can always leave the surface,
so any invocation of image charges is therefore a temporary one, with the "nal state free of such
charges. Thus the dome/torus con"guration could, if one wished, be thought of having an image
charge on the stellar surface (this would be a perfect quadrupole) in addition to which the star itself
has the quadrupole surface charge needed to keep E )B"0 inside. The two image charges are equal
and opposite, corresponding to the resulting solution having no image charge. In electrostatics, there
are no parallel space charge con"gurations owing to Earnshaw's theorem: they cannot be stable.

4.12. Boundary conditions

In numerical simulations, one actually has at least two limiting choices. One strategy is to keep
the surface charge and release it (numerically) to form the electrosphere. But since the quadrupolar
moment from the charges diminishes as they recede from the star, it is necessary to keep adding to
the surface charge distribution as well, to keep E )B"0 inside the magnet (star). Thus a number of
release cycles are necessary to asymptotically approach an equilibrium solution.

The other choice, which is simpler in the aligned case, is just to discard the surface charge, and
use the radial electric "eld as an indicator of how much surface charge there should have been and
create the appropriate charges there (simulating currents #owing to the surface, not the creating of
charge per se). Now one just continues, in either case, until no surface charge or no radial electric
"eld is present, and one has driven E )B"0 in the interior and by force balance E )B"0 where
ever there are charges.
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The only di!erence is the starting electric potential, which is

U
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a3

r3
(1!3 cos2 h)B (32)

if the surface charge is present to begin with (E )B"0 inside the star), the external (vacuum) electric
"elds would be
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(1!3 cos2 h) (outside) , (33)

Eh"!2U
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r4
sin h cos h (outside) . (34)

These "elds give E )BO0 at just above the surface (since we pass from E )B"0 inside through this
surface charge), and we "nd again from Eq. (9) and Eq. (10), setting r"a, that

E )B"

4U
0
B
0

3a
cos h(1!3 cos2 h) (surface) , (35)

showing (as advertised earlier) that the forces act to remove whichever sign of surface charge sitting
on the surface.

Alternatively, we could instead assume the surface charge is missing in which case
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r3
(1!3 cos2 h)B , (36)

but the star is `nakeda and now does not have E )B"0 in the interior. The disadvantage here is
that it is less clear where and in what order charges should be introduced, and since we can have full
families of solutions depending on the overall system charge (the central charge plus whatever
excess might reside in the electrosphere) one risks getting a slightly di!erent equilibrium solution.
In the case where we start with the surface charge, we can simply add a second uniform surface
charge (which is invisible to the interior) and then start the process, which results in a unique family
of solutions [22]. In Fig. 4 we show how the dome and torus vary as one changes the overall system
charge. These con"gurations are each unique because the charges all start at the surface and follow
magnetic "eld lines to their equilibrium positions. Unless one adds additional sources of ionization
(most popularly, the pair-production cascades) or somehow allows particles to cross magnetic "eld
lines, one will always get the same one-parameter family of con"gurations. In any case, once the
electrosphere has been set up, the surface charge is gone and E )B"0 in the interior. For reasons
special to the oblique rotator (to be discussed next), we shall prefer the choice in which the star
initially has the required surface charge, which is subsequently released. As a "nal point, we show
what happens when a totally "lled magnetosphere is truncated at some "nite distance. Since
truncation removes space charge that is essential for E )B"0 in the interior, the resultant
con"guration is immediately rendered unstable and collapses into the dome and torus con"gura-
tion, as shown in Fig. 5.
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Fig. 4. Dome and torus for varying system charges. The central charge is taken to be #15 units.

Fig. 5. Collapse of the totally "lled magnetosphere when truncated. The line in the "rst "gure is the zero charge density
line separating minus from plus charges.

Even if we were to truncate the TFM at the `light cylindera, it would simply collapse to
a stationary dome/torus con"guration. Consequently, the TFM is not a solution of the aligned model!

4.13. Relevance to pulsars

From time to time the aligned model(s) have come under attack for the wrong reasons, namely
that they would not pulse, owing to the axial symmetry. But pulsation has generally been assumed
to be due to a "nite angle between spin and dipole axis. The key assumption was that the physics
would be `more or less the samea, despite such misalignment. Now however, the assumption seems
quite the opposite (at least in these quarters), namely that the physics will be signi"cantly di!erent!
If an aligned rotator simply functions as an ion/electron trap on a huge scale, it is not too promising
as a pulsar model. Curiously, a number of ide& es xxes are left over from the aligned model: (1) radio
emission comes up out of the poles, (2) centrifugal forces are dominant, and (3) that it would even be
active. The "rst consequence of dropping axial symmetry is that another important force is to be
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found at the `light cylindera, namely the ponderomotive force of the large amplitude electromag-
netic waves on the particles surrounding the pulsar. Indeed, energy radiated by such waves is where
the magnetic "eld estimates (Eq. (8)) came from in the "rst place. However, if one assumes a wind,
then the dipolar "eld lines would be forced open and the magnetic energy carried away by the wind
gives exactly the same scaling. Thus, the energy density at the light cylinder scales as B2

-#
, where

B
-#
"B

0
a3/R3

-#
, with R

-#
,c/X, and the energy #ux at c through the surrounding area 4nR2

-#
scales

as B2
0
a6X4, exactly the same as for dipole radiation. Given the zeroth order defects in the aligned

model insofar as pulsar function goes, we will examine the other limit of the inclined rotator, an
orthogonal rotator.

5. The orthogonal rotator

Here we calculate the electric and magnetic "elds near the star for the case that the dipole and
spin axes are orthogonal.

Tilting the magnetic "eld (modeled as a central point dipole) through 903 gives the "eld
components [4, Section 5.2],
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Now however the time dependence of the magnetic "eld directly induces electric "elds as the next
step of approximation (`truea induction if one wishes to make that distinction).

5.1. The induced electric quadrupole

These induction electric "elds (which are now only part of the total electric xeld ) are

E
r
"0, (induction "elds only) (all r) , (40)
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These equations are not full solutions of Maxwell's equations but only the leading terms in the
power series in rX/c, which must terminate in the 1/r wave "elds. Thus we implicitly assume
aX/c;1 here, although it is not necessary to make this approximation, and further on we will
give the full solutions, including the radiation "elds, that would "ll all of space if the space around
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a rotating magnetized neutron star were a perfect vacuum (only possible if surface charge is
retained, as we have seen).

Rather than derive the above components, we can simply check them, as for example starting
with the /-component

(+]E)
(
"!

RB
(
Rt (all r) (43)

we obtain from Eqs. (39) and (41)
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so we require once again the boundary condition U
0
"Xa2B

0
. The remaining induction equations

can easily be shown in directly the same way to be satis"ed.
The time-dependence of these electric "elds themselves give the displacement currents that

provide the magnetic part of the outgoing wave "elds, but we neglect that near the star.
Because we will no longer need to take into account the time-dependence of the "elds, we will

write /!Xt,/
4
where /

4
is the longitude on the star, with /

4
"0 the longitude of the magnetic

moment of the star.
We have not yet included the fact that the star is a conductor.

5.2. Conducting star; a second `induceda electric quadrupole

One can see that the star being a conductor is important by calculating for the interior (as well as
exterior) "elds that (Eqs. (38), (39), (41) and (42))
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and therefore the induction electric "eld would drive currents in the star. Consequently, an internal
quadrupole must appear to kill o! this non-zero E )B below the surface. Again, this electric "eld
appears spontaneously because it is `induceda by the non-zero Lorentz force that would be present
otherwise. The required quadrupolar potential can be shown from direct calculation to be
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which gives the additional electric "elds
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If we now calculate just the part of E )B contributed by these "elds, we "nd
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cos h (inside) . (50)

Thus we see that the desired term canceling Eq. (45) has been obtained, and again the internal
MHD condition will be satis"ed.

Just as in the case of the aligned rotator, the internal quadrupole "eld requires a charge
separation everywhere inside the star, while in fact the conducting star ends at the surface. In
exactly the same way (except here there is no monopole component because this potential averages
to zero), we conclude that we need an internal quadrupole (b) and an external quadrupole (c) such
that
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so immediately (at r"1) b#c"!1 and di!erentiating with respect to r
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giving !3b#2c"1, and hence b"!3/5 and c"!2/5.
At this point we will examine just these leading near-"eld terms. Again from the point of view of

numerical simulation, one has the choice of providing a surface charge to replace the missing
space-charge beyond the star or simply leave the surface naked and tolerate a "nite E )B inside the
star until the electrosphere is set up. It proves to be somewhat less confusing to provide the surface
charge because the external quadrupole "eld then cancels the induction "eld at the magnetic polar
caps and thereby removes a nonzero component of E )B at the surface of the star that cannot
actually pull particles from the star. Including such a term can make assessing where particles are
removed on the basis of the surface value of E )B very confusing, but this is a technical point mainly
of interest to someone doing numerical simulations.

If we keep the surface charge, then outside of the star we have a potential

U
SC
"!U

0

a3

r3
sin h cos h cos/

4
(outside) (53)

which di!ers only in the power of r necessary for a vacuum solution external to the star. This
di!erence alters the external electric "elds to

E
r
"!3U

0

a3

r4
sin h cos h cos/

4
(outside) , (54)

Eh"!U
0

a3

r4
(sin2 h!cos2 h)cos/

4
(outside) , (55)

E
(
"!U

0

a3

r4
cos h sin/

4
(outside) , (56)
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and when we add these to the induction electric "elds (starting with Eq. (47)), we "nally get

E
r
"!3U

0

a3

r4
sin h cos h cos/

4
(outside) , (57)

Eh"U
0A

a3

r4
cos 2h!

a
r2Bcos/

4
(outside) , (58)

E
(
"U

0A
a
r2
!

a3

r4Bcos h sin/
4

(outside) . (59)

If we now calculate the value of E )B just above the surface we get

E )B"!

4U
0
B

0
a

sin2 h cos h cos2/
4

(outside) . (60)

Thus the action is to pull the surface charge o! the surface and exactly matches where the surface
charge is and what sign it has ( just as we obtained in the aligned case). Surface charge, regardless of
sign, is always pulled ow. The charges appear at the surface in the "rst place because (by
assumption) they cannot go any further. And there has to be a surface to terminate any rotating
system lest material move faster than c.

The total electric "eld inside is then the sum of the induction "eld and the quadrupole "eld, hence

E
r
"!U

0

a
r2

sin h cos h cos/
4
(total int. "eld) (inside) , (61)

Eh"!2U
0

a
r2

sin2 h cos/
4

(inside) , (62)

E
(
"0 (inside) . (63)

Notice that Eh vanishes at h"0 both inside and outside, as needed to eliminate a `surfacea
contribution to E )B from the induction electric "eld.

5.3. Rigid corotation

Let us now calculate V
D
,E]B/B2 inside the star, for the special case of "elds in the /

4
"0

plane (for reasons to become apparent)

(E]B)
(
"U

0
B

0

a4

r5
sin(1#3 sin2 h) (inside) (64)

while

B2"B2
0

a6

r6
(1#3 sin2 h) (inside) (65)
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giving

<
D
"

U
0
r

B
0
a2

sin h"rX sin h (inside) (66)

and again rigid corotation of charges with the star, as required.
In the orthogonal plane (cos/

4
"0), the electric "eld vanishes and the magnetic "eld is parallel

to the corotational velocity vector. There is no corotational E]B drift. Here the charges corotate
for the same reason that they would in an unmagnetized conducting sphere, not because the Lorentz
force gives them a drift velocity but because they get in the way of their corotating neighbors.
Corotation is not simply E]B drift in the orthogonal (or inclined) case.

5.4. Plasma distribution about the orthogonal rotator

The problem of numerically simulating the non-neutral plasma distribution about the ortho-
gonal rotator have not yet been addressed. This problem lacks, of course, the symmetry that
reduces a three-dimensional simulation to a two-dimensional one. Qualitatively it is clear that the
quadrupolar surface charge will again leave the surface but not escape the system. Thus what was
two domes and a torus for the aligned case now deform and the torus splits in two to give a total of
4 domes of alternating charge girding the star. For purposes of illustration, we can repeat the `GJa
treatment [15] by again assuming that the internal charge-separation density continues right
through the surface to become a space-charge density and that the entire space becomes the
`insidea solution. In the divergence of the (inside) electric "eld, only Eq. (62) contributes and we
immediately get the (inside) charge-separation density [23,24]

o"!6e
0
U

0

a
r3

sin h cosh cos /
4
. (67)

If we simply extend this solution to everywhere outside the star aH là GJ, we would de"nitely get an
active system since the plasma would be driven out of the system by wave acceleration near the
wave zone. Moreover, equal numbers of positive and negative charges could be driven away
(`solvinga the current closure problem). But at the same time, the polar cap charge densities and
accelerating "elds vanish at the polar caps. Note again that o is directly proportional to B

z
:

o"!2e
0
XB

z
. (68)

Work is in progress to do these simulations for the orthogonal and also inclined rotator discussed
below. Since pulsars must have (according to the conventional wisdom) inclined dipolar magnetic
"elds to even act as rotating `light-housesa, the inclined case showing the transition between the
two limits is of particular interest.

6. The inclined rotator

An inclined magnetic dipole is simply a linear superposition of the aligned and orthogonal limits.
The only possible misstep here concerns E )B"0 inside the star because now we have two
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components to each, E"EA#EO (Aligned and Orthogonal) and B"BA#BO, so we need to
con"rm that the cross-terms EA )BO#EO )BA"0 as well. Although the individual terms EA )BA

and EO )BO vanish, the later condition is not guaranteed in general. However, it should hold
because each pair is orthogonal and in the same ratio <

D
. Thus for the orthogonal electric "eld

components (Eq. (61)) and aligned magnetic "eld (Eq. (9)) we have

EO )BA"!2U
0
B

0

a4

r5
sin h cos/

4
(69)

while for the aligned electric "eld (Eq. (14)) and oblique magnetic "eld (Eq. (37)) we have

EA )BO"2U
0
B
0

a4

r5
sin h cos/

4
(70)

and we see that indeed one can superimpose the two "elds while retaining rigid corotation and zero
"eld-aligned electric "elds inside the star.

6.1. Summary of external near xelds

Here we list the electric and magnetic "elds outside the surface of a rotator inclined an angle
m (see Fig. 6) with respect to the rotation axis and having a canceling surface charge that guarantees
E )B"0 inside the star. Note that even though the interior satis"es the MHD condition, the
exterior does not because one passes through the surface-charge layer. Thus if one creates and
releases particles from the surface, the resultant internal quadrupole will violate the MHD
condition and the surface-charge distribution will have to be reduced or modi"ed. A simple
numerical strategy would be to calculate, after having released a number of particles, their
quadrupole moment inside the star and appropriately reduce that due to surface charges until

Fig. 6. Inclined rotator with magnetic moment directed along M, rotating about the inertial axis z relative to axes x
and y. The inclination angel m is "xed as / changes. The usual polar angle h is measured from z (not illustrated).
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(to some "nite accuracy) one cannot release another charge (each `chargea being a huge one
compared to the electron charge, of course).

The magnetic "elds are given from Eqs. (9) and (37),

B
r
"2B

0

a3

r3
(cos m cosh#sin m sin h cos/

4
) , (71)

Bh"B
0

a3

r3
(cos m sin h!sin m cos h cos/

4
) , (72)

B
(
"B

0

a3

r3
sin m sin/

4
. (73)

The associated electric "elds are then given from Eqs. (33) and (57)

E
r
"XaB

0A
2
3

cosm
a2

r2
#cosm

a4

r4
(1!3 cos2h)!3 sin m

a4

r4
sin h cos h cos/

4B , (74)

Eh"XaB
0C!2 cos m

a4

r4
sin h cos h#sin mA

a4

r4
cos 2h!

a2

r2Bcos /
4D , (75)

E
(
"XaB

0
sin mA

a2

r2
!

a4

r4Bcos h sin/
4

(76)

6.2. Locus of trapping regions

In the case of E;B (or at least E
M
;B), it is well known that particles mainly experience

acceleration along the B "eld (JE )B) while the acceleration perpendicular to B averages to zero.
Hence, E )B"0 de"nes the force-free surfaces. If we concentrate on the forces just above the
surface of the star, the values of E )B simplify signi"cantly and we get

E )B
3a

4U
0
B

0

"cos2m cos h(1!3 cos2h)#sin m cos m sin h(6 sin2 h!5)cos/
4

!3 sin2 m sin2 h cos h cos2/
4
. (77)

If we wish to know the distribution in space above the surface, then we have (for /
4
"0)

M#N
a2

r2
"0 , (78)

where

M"4
3
cos m(cos m cos h#sin m sin h)!sin m(cos m sin h!sin m cos h) , (79)

N"!4 cos2 m cos3h!sin2m cos h(5!4 cos2h)#sin m cos m sin h(1!8 cos2 h) . (80)
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Fig. 7. Cross sections of force-free surfaces (thick solid lines) around a star (thin solid circle) using vacuum "elds for
various angles between spin and magnetic dipole axes (dashed line). An electric dipole from the central charge 2

3
cos m is

also included. As more and more charges are `releaseda from the star surface, they will modify the "elds around the star
and `"ll upa these force-free surfaces. Consequently, `domesa and `torusa will form instead.

The locus of E )B"0 is shown in Fig. 7. Notice the di!erence between our results and those in
Thielheim and Wolfsteller [25] where they omitted the central charge. Note that even in this most
general case, the locus of zero charge density is the locus of zero B

z
, since

o"!2e
0
XB

z
(81)

once again.

6.3. Trapping regions

Notice in the aligned case that the trapping locus over the magnetic polar caps is a circle quite
close to the surface. This trapping locus is what anchors the domes. In the equatorial plane, the
plane is the trapping surface, and the positive particles would all accumulate here were it not for
their self-repulsion so they form a torus instead [7].

7. The Deutsch 5elds

The full solution of the outside "elds generated by a rotating magnetized sphere in vacuum with
angle m between the spin and magnetic dipole axes (Fig. 6) has been given by Deutsch [1], with the
(implicit) assumption that surface charges can somehow be maintained. Here, we give his original
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solutions (in complex variables) for the sake of completeness (adopting changes in notations and
correcting several typos)

B
r
"2B

0G
a3

r3
cosm cos h#

h
1
/o

(h
1
/o)a

sin m sin h e*(4H ,

Bh"B
0G

a3

r3
cos m sin h#CA

o2

oh@
2
#h

2
Bah2#A

o
h
1
BaAh@

1
#

h
1
o BDsin m cos h e*(4H ,

B
(
"B

0GA
o2

oh@
2
#h

2
Bah2

cos 2h#A
o
h
1
BaAh@

1
#

h
1
o BHi sin m e*(4 , (82)

E
r
"E

0G!
1
2

a4

r4
cos m(3 cos 2h#1)#3A

o
oh@

2
#h

2
Ba

h
2
o

sin m sin 2h e*(4H ,

Eh"E
0G!

a4

r4
cosm sin 2h#CA

o
oh@

2
#h

2
BaA

oh@
2
#h

2
o Bcos 2h!

h
1

(h
1
)aDsin m e*(4H ,

E
(
"E

0GA
o

oh@
2
#h

2
BaA

oh@
2
#h

2
o B!

h
1

(h
1
)aHi sin m cos h e*(4 , (83)

where o"rX/c, a"aX/c, /
4
"/!Xt, and E

0
,XaB

0
. h

1
, h

2
and h@

1
, h@

2
are spherical Bessel

functions of the third kind with argument o and their derivatives, respectively. The subscript
a means that the functions enclosed are evaluated at o"a. Speci"cally, we have

h
1
"C!

1
o
!

i
o2De*o ,

h@
1
"C

2
o2

#iA
2
o3

!

1
oBDe*o ,

h
2
"C!

3
o2

#iA
1
o
!

3
o3BDe*o ,

h@
2
"CA

9
o3

!

1
oB#iA

9
o4

!

4
o2BDe*o . (84)

It is apparent that the "elds are a sum of the aligned component (terms with cos m) and the
orthogonal component (terms with sin m e*(4). Furthermore, orthogonal component radiates, thus
all of them have a phase term e*((4`o~a) where the extra e*(o~a) term comes from the spherical Bessel
functions (e.g., terms such as h

1
/(h

1
)a). Hence, the "elds (F ) can be written as11

F"F(aligned)#F(dipole)#F(quadrupole) , (85)

11The analysis here is largely repeating Section 5.2 of Ref. [4], except for a few typos in Ref. [4]: Eq. (16d) should be
multiplied by a factor of 2 and the multiplication factors (before and after Eq. (25)) di!er for B and E by a factor of a
(cf. our Eq. (88)).
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where F(aligned) is given as

B
r
"2B

0

a3

r3
cos m cos h ,

Bh"B
0

a3

r3
cos m sin h ,

B
(
"0 ,

E
r
"E

0

a4

r4
cos m(1!3 cos2h) ,

Eh"!E
0

a4

r4
cos m sin 2h ,

E
(
"0 , (86)

F(dipole) is

B
r
"2B

0

h
1
/o

(h
1
/o)a

sin m sin h e*(4 ,

Bh"B
0A

o
h
1
BaAh@

1
#

h
1
o Bsin m cos h e*(4 ,

B
(
"A

o
h
1
BaAh@

1
#

h
1
o Bi sin m e*(4 ,

E
r
"0 ,

Eh"!E
0

h
1

(h
1
)a

sin m e*(4 ,

E
(
"!E

0

h
1

(h
1
)a

i sin m cosh e*(4 (87)

and F(quadrupole) is

B
r
"0 ,

Bh"B
0A

o2

oh@
2
#h

2
Ba h2 sin m cos h e*(4 ,

B
(
"B

0A
o2

oh@
2
#h

2
Ba h2 cos 2h i sin m e*(4 ,
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"E

0
3A

o
oh@

2
#h

2
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h
2
o

sin m sin 2h e*(4 ,

Eh"E
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o
oh@

2
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2
BaA

oh@
2
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2
o B cos 2h sin m e*(4 ,

E
(
"E

0A
o

oh@
2
#h

2
BaA

oh@
2
#h

2
o Bi sin m cos h e*(4 . (88)

Finally, adding the electrostatic monopole discussed above, we can recast Deutsch's solutions Eqs.
(82) and (83) as, after taking real parts,12

B
r
"2B

0

a3

r3
Mcos m cos h#sin m sin h[d

1
cost#d

2
sint]N ,

Bh"B
0

a3

r3
Mcos m sin h!sin m cos h[(q

1
#d

3
)cos t#(q

2
#d

4
)sint]N ,

B
(
"B

0

a3

r3
sin mM![q

2
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4
]cost#[q

1
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3
]sintN , (89)
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3
o2

sin m sin 2h[q
1
cost#q

2
sint]H ,
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2
)sint]H ,
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(
"E

0
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r2
sin m cos hM(q

4
!d

2
)cos t!(q

3
!d

1
)sintN , (90)

where t"/
4
#o!a (again, the extra term o!a comes from the Bessel functions) and

d
1
"

ao#1
a2#1

,

d
2
"

o!a
a2#1

,

d
3
"

1#ao!o2

a2#1
,

12A subroutine on solving these "elds around a neutron star is available by sending an email to hli@lanl.gov.
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d
4
"

(o2!1)a#o
a2#1

,

q
1
"

3o(6a3!a5)#(3!o2)(6a2!3a4)
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q
2
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(3!o2)(a5!6a3)#3o(6a2!3a4)
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3
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,

q
4
"

(6!3o2)(a5!6a3)#(6o!o3)(6a2!3a4)
o2(a6!3a4#36)

, (91)

where all the d
i
and q

i
terms come from F(dipole) and F(quadrupole), respectively. For those who

prefer Gaussian units over SI units, change E
0

to E
0
/c in all the above equations.

We will now discuss these "elds in near (o&a) and far (oa<1) regions. First, in the near zone,
the leading (considering the comparative importance) terms are

d
1
+1, d

3
+1, q

1
+a2/2, q

3
+(a/o)2,

which give (noting that t+/
4
)
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2
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E
(
"E

0
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a2

r2
!

a4

r4Bcos h sin/
4
. (92)

These are the same as Eq. (71)}(76), which show that the nearby B "elds are dominated by the
aligned component and part of the dipole component (J1/r3), whereas all components are present
in E "elds.
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The asymptotic far "elds (o<1) can be obtained by noting that the only leading compo-
nents are

d
2
+o, d

3
+!o2 (93)

which give us
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sin m cos h cost ,
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sin m sint ,

E
(
"!E

0

a2

r
X
c

sin m cos h cost . (94)

Except for the electric monopole due to the central charge, these are the standard textbook wave
"elds.

Fig. 8 depicts some open "eld lines when m is nonzero. In Fig. 9, we show the deviation from
static dipole magnetic "eld lines when the star is rotating by starting at the same footpoints on the
star surface. Fig. 10 shows the role of electric dipole from the central charge. Fig. 11 compares
the shape of the polar cap of a tilted rotating dipole with that of an aligned dipole. The polar cap is
de"ned by the footpoints of those magnetic "eld lines whose maximum distance to the rotation axis
is R

-#
. Fig. 12 shows the selected closed and open "eld lines of an orthogonal rotator and how they

`crossa the light-cylinder distance. Fig. 13 shows the structure at large distances. In the plane
perpendicular to the rotation axis and containing the rotating dipole, curiously, there are only two
open "eld lines which are the Archimedes spirals. As we will show immediately below, these
two spirals are nearly the minimum of DBD at each r. The rest of "eld lines (with o<1) all appear to
converge to these two `nulla lines. This behavior is rather counter-intuitive as one generally expects
all open "eld lines in this plane spiral around to in"nity. This derives from the consideration that
the dominant B

r
term falls as 1/r2 while B

(
drops as 1/r, so the "eld line equation gives

dr/d/"const., which is a spiral. To show this explicitly, using Eq. (94) for an orthogonal m"n/2
rotator and in the plane of h"n/2, one actually "nds

oB
r
/B
(
"!

2 sint
sint

"!2 (95)
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Fig. 8. Single polar "eld lines (h"m and /"0) for m"53, 453, and 853 from top to bottom, respectively. These "eld
lines (as well as their near neighbors) are presumably the `opena "eld lines that go out to in"nity. The rotation axis is up
and the magnetic axis is tilted to the right. All dimensions are in units of R

-#
and parameters similar to Crab pulsar are

used.
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Fig. 9. 3-D and a side-view (2D) of two closed "eld lines (solid lines) starting with /"0 and h+m$(a/R
-#
)1@2

from a titled rotator (m"453). The dashed lines represent the case if the star is not rotating. The rotation axis is
up and the magnetic axis is titled to the right. All dimensions are in units of R

-#
and parameters similar to Crab pulsar

are used.

Fig. 10. The electric "eld lines near the star with (upper panel) and without the central charge (lower panel). Here,
m"453, /"0 and two panels have the same set of initial h angles. It is clear that the radial component from the electric
dipole `pushesa the "eld lines out. The rotation axis is up and the magnetic axis is titled to the right (dashed line). All
dimensions are in units of R

-#
and parameters similar to Crab pulsar are used.

which implies that

D*oD"D*r/R
-#
D"2*/ . (96)

In other words, the distance between the same "eld line is 4n instead of 2n as expected for one
wavelength. Hence the casual expectation that all open "eld lines spiral around is not right. To do
this correctly, one has to realize that the `correctiona terms in B become important when sintP0.

262 F.C. Michel, H. Li / Physics Reports 318 (1999) 227}297



Fig. 11. The shape of the polar cap for m"453. The magnetic axis is at (0, 0) and pointing out of the paper, and the
rotation axis is tilted to the left. Filled dots indicate the footpoints of the "eld lines with the maximum distance to the
rotation axis being R

-#
. Solid line represents an aligned dipole case. Parameters similar to Crab pulsar are used.

Fig. 12. Selected closed and open "eld lines for an orthogonal rotator. All "eld lines are in the plane perpendicular to the
rotation axis and containing the rotating dipole. (The dipole axis is pointing to the right.) As the distance from the star
increases, the radial component of the open "eld lines decreases, so that they all appear to converge to two `nulla "eld
lines, which are the locus of (nearly) minimum B. The null "eld lines form two Archimedes spirals, separated by n, and
going out to in"nity (not shown here). Note that the radial component of the open "eld lines should never be exactly zero.
All dimensions are in units of R

-#
and a period of 1 ms is assumed in order to resolve the size of the star.

Using the full expressions from Eq. (89), we need the following ratio

oB
r

B
(
"!

2(a cost#sint)
(a#1/o)cost#sint

(97)

to be !1 for an outgoing spiral. Hence, we "nd that the Archimedes spirals are only possible for
speci"c t,

t"arctan(!a#1/o) or n#arctan(!a#1/o) . (98)

These are the two spirals seen in Fig. 13. Note that with these t, B
r
and B

(
are nearly zero, thus the

spirals are indeed almost the minimum of DBD at that distance r.

8. The particle motions

Having discussed the sort of "elds that we would expect about an oblique rotator in vacuo, we
will examine some of the particle dynamics in such "elds. Particle acceleration (and radiation) in
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Fig. 13. Shown is the only two Archimedes spirals that are allowed by the magnetic "eld structure in the equatorial wave
zone. Same parameters as in Fig. 12 are used.

the intense pulsar far "elds has been an important topic over the years due to its possible
implications for cosmic rays and the excitation of plerions [26,27]. These considerations have
become even more important with the Hubble Space Telescope discovery that the pulsar in the
Crab Nebula seems to have a jet coming out along what seems to be the spin axis, which is at "rst
invisible but then excites a knot of emission very near the pulsar. At about 10 times further out the
jet seems to create a shock wave, evidenced by a second knot that moves chaotically around.
Beyond this apparent shock one "nd a very long jet visible most easily in X-rays [28]. The nature of
the "rst knot is quite open since one would not expect a #ow to shock twice. If one uses standard
estimates of magnetic "eld strength in the Nebula, one would expect that the magnetic "eld at this
"rst knot to be about 10~2 G. This "eld would not be a static "eld but the "eld of a circularly
polarized wave being emitted by the rotating pulsar. There are important questions about the
stability of electromagnetic waves from a pulsar [29,30] and one possibility is that there is wave to
particle energy transfer at the distance of the "rst knot. An alternative is that there is a resonance
with the gyrofrequency of the particles in a longitudinal (static) component of the magnetic "eld
with the rotation rate of the waves. The latter consideration inspired a careful examination of such
a process, which we review in increasing steps of detail. We start with the planar wave in order to
understand particle's general behavior, then we discuss the particle motion in the full Deutsch
"elds. However, we must emphasize that the following is not intended as a review of wave-particle
interactions [31], a subject that ranges over a vast landscape, but simply provides a text-book level
analysis to provide a standardized starting point for electromagnetic wave emission from pulsars.

9. Pickup and acceleration in planar waves (exact)

A particularly simple case is when particles start at the axis of rotation of an orthogonal
magnetic dipole. Along this axis, the radiated electromagnetic waves will be circularly polarized

264 F.C. Michel, H. Li / Physics Reports 318 (1999) 227}297



and the huge intensity of such "elds (in the case of pulsar modeling) should sweep up any plasma
near the wave zone and drive it away from the neutron star. If we approximate the wave as a plane
wave, a number of interesting phenomena appears: (1) the solutions are exact and analytic, (2) the
acceleration is only temporary, and the wave cyclically reabsorbs the particle energy, (3) the critical
parameter in determining a particle's energy is the ratio of wave frequency and particle cyclotron
frequency, (4) resonance takes place when the frequency of the wave (u) equals the particle
cyclotron frequency in the steady axial "eld component, i.e., u"u

,
because for particles starting

from rest, c(1!b
,
)"1.

9.1. Nonrelativistic case

For a circularly polarized wave moving in the #z direction we will have oscillating E and
B "elds in both the x and y directions. Thus the Lorentz force reads

m
dv

x
dt

"e(E
x
#0!v

z
B

y
) , (99)

m
dv

y
dt

"e(E
y
#v

z
B

x
!0) , (100)

m
dv

z
dt

"e(0#v
x
B

y
!v

y
B
x
) . (101)

(Later we will include a static B
z

component.) Let us select the case where the "elds rotate
counterclockwise in the x!y plane, as shown in Fig. 14 where the instantaneous E]B drift
velocity would be in the #z direction, and the test particle is an electron (e"!e

0
). The rotating

"elds can be written (propagation in vacuo),

E
x
"cB

M
cos/ , (102)

Fig. 14. The circularly polarized wave "elds as seen looking in the !z direction.
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E
y
"cB

M
sin/ , (103)

B
x
"!B

M
sin/ , (104)

B
y
"B

M
cos/ , (105)

with

/"ut!kz#/
0

, (106)

where /
0

is an arbitrary phase factor, which will henceforth be set to zero.

9.2. The textbook solution

The standard analytic approach is to look for harmonic solutions. Here we have set B
z
"0

(we will put it back in almost immediately). The obvious solution can be gotten from inspec-
tion since the equilibrium solution will have * orthogonal to E, which means that the velocity is
parallel to the wave magnetic "eld and those components of the Lorentz force vanishes. Thus
the electron will only see the electric "eld and will in e!ect act like a particle on a string being
swung around at the rotational rate u with the centrifugal force balancing the electric force
(Fig. 15):

mv
M
u"e

0
E"e

0
cB

M
, (107)

Fig. 15. Inhomogeneous solution for electron in rotating wave "elds. Here the velocity is orthogonal to E such that
centrifugal and electric forces balance. Consequently, * parallels B and the Lorentz forces all balance with an arbitrary
velocity in the z direction. But this is not the general solution.
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where e
0

is the magnitude of the electron charge (in order that we can de"ne the cyclotron
frequency as a positive quantity without negative signs) and v

M
is the circular speed,

v
M
"c

u
M

u
, (108)

where u
M

is the non-relativistic cyclotron frequency at the wave's magnetic "eld,

u
M
,

e
0
B

M
m

. (109)

Notice immediately that one could easily have v'c, at low enough wave frequency in which case
we would need to return and do the problem relativistically. This observation is a central
consideration here. Continuing with the nonrelativistic limit for the moment, we can see that the
acceleration along the z axis is zero and hence v

z
can be any constant. Explicitly writing out this

solution, we have

v
x
"!v

M
sin/ , (110)

v
y
"v

M
cos / , (111)

v
z
"const . (112)

We can explicitly substitute these into the Lorentz equations and see that they are satis"ed.
However, if we put some numbers in here we can see that this solution is preposterous! Even at

the distance of the apparent shock along the spin axis of the pulsar (the second, much more distant
knot), the expected wave magnetic "eld would be of the order of B

M
+10~3 G or an electron

cyclotron frequency of about u
M
+2]104. Since the rotational frequency of the Crab pulsar is

roughly 200 rad/s, we see that the perpendicular velocity would have to be 200c! Obviously
a non-relativistic treatment is insu$cient and the simplest reinterpretation is that the Lorentz
factor should enter as a change in e!ective mass, mPcm in Eq. (107), and therefore c+200. But
even with this quick "x we still have a problem: where could the electron get an energy of 50 MeV
simply in order to run around in a circle?

But textbooks give derivations just like the one above. What is the problem? The problem is that
the answer is incomplete, it is only the inhomogeneous part of the solution. The inhomogeneous
part is the part having no free parameters. Thus the particle initial condition cannot be varied. That
is, of course, exactly what the homogeneous part of the solution is for. The homogeneous part is
implicitly discarded at various places in many textbooks because the author is not interested in it
for one reason or another (e.g., a harmonically bound electron in an electromagnetic wave to
illustrate scattering, etc.). But it breeds a bad habit as illustrated here. The most likely initial
condition is for a wave to overrun an electron at rest, not an electron that happens to have energy
50 MeV and moving in just the right direction.

9.3. Particle pickup from rest (nonrelativistic case again)

Now consider the case where a charged particle suddenly "nds itself at rest at some phase of such
a wave instead of dutifully circling. Nowhere is the particle at rest in the above solutions. But this
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solution is the standard one found in standard plasma textbooks about plasma motion in
a circularly polarized wave (with v

z
"0 in addition). It is plausible that the mean velocities might

be zero before the wave is introduced. But the typical argument is that these velocities are somehow
zero after the wave is introduced, which we immediately show to be incorrect.

The simple answer for the motion starting from rest is that, if we see the circular motion in
a moving system with the same velocity v

M
, the particle will repeatedly come to rest (at /"0). It is

immediately clear then that the x and y velocities are instead

v
x
"!v

M
sin/ , (113)

v
y
"v

M
(cos /!1) . (114)

However, now the particle has a uniform component of motion, so as it moves, it sees the
alternating B

x
which causes it to oscillate up and down along the z axis, since now the Lorentz force

reads

m
dv

z
dt

"e(v
M
B

x
)"ev

M
B

M
sin / (115)

and therefore

v
z
"v

@@
(1!cos/) , (116)

where again we need a constant term if the particle started from rest (at /"0), and

v
@@
"v

M

u
M

u
"cA

u
M

u B
2
. (117)

Thus an electron is accelerated forward with the wave. This acceleration is rarely seen in the
standard plasma physics textbook treatments because the mean velocities are all assumed to be
zero after the wave is introduced. It is tempting to view this acceleration as being due to `radiation
pressurea, but as we will see, it is really a coherent wave-particle interaction since the particle will
return to rest.

9.4. Nonlinear terms

Having uniform and harmonic components to v
z
is not entirely innocuous because the term kz

depends on z which hitherto was an independent variable. A constant z velocity simply changes the
value of k (nonrelativistic equivalent of the Doppler shift), but a harmonic term in k makes it time
dependent, and our whole treatment becomes approximate. However, the time derivative of v

x
now

becomes

dv
x

dt
"

d/
dt

dv
x

d/
"(u!kv

z
)
dv

x
d/

(118)
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and as long as c"u/k, the potentially nonlinear term v
z
B
y

cancels out because we now have

m(u!kv
z
)
dv

x
d/

"eB
M
(c!v

z
)cos/ (119)

and our harmonic solutions go through exactly as before, even when v
z
itself is non-uniform as is

the case for particle pickup. The z component of the Lorentz force itself becomes nonlinear, but in
an integrable form;

m(u!kv
z
)
dv

z
d/

"e
0
v
M
B

M
sin / (120)

which can immediately be integrated to give the quadratic equation

mAu!

1
2
kv

zBvz"e
0
v
M
B

M
(1!cos/) , (121)

where the unity is the constant of integration needed if v
z
starts from rest (at /"0). If we neglect

the non-linear term, we already have seen that v
z
has amplitude v

@@
, and if we label b

nr
"v

z
/c the

above value, the relativistic value becomes

b"1!J1!2b
/3
+b

/3
#

1
2

b2
/3
#2. (122)

It may look as if this expression becomes complex for b
nr
'1/2, but in the relativistic treatment,

m becomes cm (sort of, we will do the relativistic treatment exactly in the following section), and it is
easy to show that 2b/c cannot exceed unity.

As an aside, when the equations are non-linear, we no longer have the usual classi"cation of
inhomogeneous and homogeneous solutions. The analog of the inhomogeneous solution is called
the singular solution, and the rest are the general solutions. The singular solution has the same
properties as the inhomogeneous solution: no degrees of freedom.

9.5. Relativistic Lorentz force

The Lorentz force gives the time derivatives of the particle momenta, which in the relativistic
treatment become cmv or equivalently mccb, so we now have

mc
d(cb

x
)

dt
"e(E

x
#0!v

z
B

y
) , (123)

mc
d(cb

y
)

dt
"e(E

y
#v

z
B
x
!0) , (124)

mc
d(cb

z
)

dt
"e(0#v

x
B

y
!v

y
B

x
) , (125)
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and the fourth (energy) equation is

mc2
dc
dt

"e(v
x
E
x
#v

y
E
y
#0) . (126)

9.6. Covariant version

Super"cially, the "rst three come from the Lorentz force simply by multiplying every m by c and
the fourth equation simply says that work is done on the particle at rate * )E. In covariant notation,
the four equations are one four-vector equation,

m
dua
ds

"

e
c
Fabub , (127)

where a and b run over the four time plus coordinate components. Repeated indices (here b) are
summed over all four components. The four-velocity is

ua,
dxa
ds

H c(c, v
i
)H c(c, v

x
, v

y
, v

z
) , (128)

where we contrast the indexed vectors with their explicit components. Here i is the corresponding
ordinary mathematical index running over just the three coordinates. These indices are often
numbered (e.g., 0, 1, 2, 3) for no good reason, given that ordinarily vector components are just
subscripted with the obvious axis symbols x, y, z. The down-index (covariant) four-velocity just
di!ers by a sign,

ub"c(c,!v
i
) , (129)

which gives the invariant (scalar) equation

uaua,c2"c2Ac2!+
i

v2
i B"c2(c2!v2) , (130)

so as usual the Lorentz factor is

c"
1

J1!v2/c2
. (131)

Since the ordinary velocity is

v
i
,

dx
i

dt
, (132)

it also follows from the de"nition of the four-velocity, Eq. (128), that

c"
dt
ds

. (133)
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Note that relativity does not supplant the ordinary velocity, which keeps the meaning it has always
had: how fast our coordinates are crossed according to our clocks.

If *"0, dt"ds so ds is the time interval for a clock moving with (say) a particle, which by
de"nition has to be the same for all observers, hence the term `propera time. `Propera velocity
(or four-velocity) is how fast our coordinates are crossed according to the moving clock and is not
limited to below c, a common misconception. The electromagnetic "eld tensor corresponds to the
electromagnetic "elds seen in the local rest system, and then (again writing "rst time and the spatial
components)

Fta"(0,!E
i
) (134)

and (e
ijk

being the totally antisymmetric tensor that de"nes the usual cross-products and curls)

Faj"AEi
,!c+

k

e
ijk

B
kB . (135)

(the electric "eld sign changes because Fab"!Fba and the sum is somewhat gratuitous given that
k must simply be whichever i and j are not). For a"t we obtain

mc
dc
ds

"

e
c
+
j

(!E
j
)(!cv

j
) , (136)

and since

d
ds

"

dt
ds

d
dt

"c
d
dt

, (137)

one set of Lorentz factors cancel leaving (after multiplying by c)

mc2
dc
dt

"e* )E . (138)

In the same way, for a"i we obtain

m
d(cv

i
)

ds
"

e
c
(cc)(E

i
)#

e
c
+
j

(!cv
j
)A!c+

k

e
ijk

B
kB (139)

and again one set of Lorentz factors cancel to yield

m
d(c*)
dt

"e(E#*]B) . (140)

Note that Eq. (138) must follow from Eq. (140) simply by taking the scalar product of the latter
with *, which leads to the unobvious but true identity that

* ) d(c*)"d(c) . (141)
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10. Relativistic exact solutions

Returning to the issue of analytic solutions, we see that just as in the non-relativistic case, we
have factors (c!v

z
) that cancel out and we have that

mcu
d(cb

x
)

d/
"ecB

M
cos/ , (142)

which has the exact solution

cb
x
"!g sin/ , (143)

where we de"ne

g,
u

M
u

(144)

since we have seen this ratio appears repeatedly. The companion component is again

cb
y
"g(cos/!1) , (145)

for particles picked up in the wave.
The two equations for z-motion and energy conservation, Eqs. (125) and (126), are remarkable in

that they are identical to one another within a factor of c. Thus we can divide the one into the other
and obtain

d(cb
z
)

dc
"1 , (146)

which immediately gives, for the initial conditions (particle starting from rest) b
z
"0 and c"1,

cb
z
"c!1 . (147)

This result provides an important constraint on the system. Since we have explicit expressions for
all three components of momentum, we can use the identity

c2(b2
x
#b2

y
#b2

z
),c2!1 (148)

and substitute into the left hand side of Eq. (147) gives

g2(sin2/#cos2/!2 cos/#1)#(c!1)2"c2!1 (149)

which simpli"es to

c"1#g2(1!cos/) . (150)

We now can solve for the z momentum obtaining

cb
z
"g2(1!cos/) , (151)
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which are exactly the non-relativistic solutions. The only remaining step to "nding a complete
solution is to solve for /(t), which is given from

d/
dt

"u(1!b
z
)"

u
c

. (152)

Hence

ut"(1#g2)/!g2 sin/ . (153)

What these equations say is that the solutions are perfectly periodic but the period is increased by
a factor

1#g2 (154)

owing to the electron (or positron) `sur"nga the wave, for once the particle is relativistic, the
circularly polarized wave looks almost linearly polarized as the particle moves with it and is
steadily accelerated.13 Notice however that there is nothing relativistic about the solutions
themselves, they are equally valid for g;1.

We can check this result for c (since we never used the energy term, Eq. (126), per se) by direct
di!erentiation of Eq. (150),

dc
dt

"g2 sin/
d/
dt

"g2 sin/(u!k
c
b
z
)"g2 sin/

u
c

, (155)

which is indeed the energy equation multiplied by c (one factor of g is brought in by the constant
part of cb

y
and ug is just eB

M
/m).

The reason we make this point is that our relativistic results are perhaps counter-intuitive. For
g;1 (non-relativistic) the larger g the higher the x and y velocities. But this behavior reverses for
g<1, where the Lorentz factor increases as g2 but cb

x
only increases as g. Thus the velocities in the

x}y plane decrease as the particle gets accelerated to ever higher energies. Mathematically, this
decrease means that the momentum in the z direction hogs all of the energy. Physically, what
happens is that the magnetic "elds become so strong that the particle is almost immediately curved
from the initial x-direction into the z-direction. The fact that the orbits become smaller may be
signi"cant to design of laboratory acceleration of particles to large energies.

10.1. Circular vs. linear polarization

It is not necessary that the waves be perfectly circularly polarized. If we attenuate the E
x

and
B
y
components by a factor of a, the only change is reduce the x-component of moment by the same

factor,

cb
x
"!ag sin/ , (156)

13A relevant problem is the particle motion in constant, static E and B cross "elds (as compared to wave "eld) with
E"cB (e.g., [32]). If starting from rest, a particle gets a tremendous boost along the direction of E]B whereas it obtains
no momentum along B and little along E. Interestingly, 1!b

z
"1/c, same as in the wave case.
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while the z and energy equations stay in the same "xed ratio. Thus

c"1#g2(1!cos/)#
1
2

g2(1!a2) sin2/ . (157)

Notice that, as can be seen by turning o! completely one or the other components, that there is
a phase dependence to the maximum energy the particle ever attains, being a maximum if the
particle is picked up when the (now linear) wave has its maximum "eld strength, and a minimum if
picked up at a null.

10.2. Resonance with a static uniform B

A classical plasma physics exercise is the e!ect of a resonance in the dispersion relation for
a circularly polarized wave propagating along the magnetic "eld direction in a uniformly magnet-
ized plasma. Rather than repeat the non-relativistic treatment, we will simply modify appropriately
the relativistic treatment above by adding in a static B

z
component to the Lorentz force. The x and

y Lorentz forces become, after rearrangement of terms

d(cb
x
)

d/
(1!b

z
)"!g(1!b

z
) cos/!hb

y
, (158)

d(cb
y
)

d/
(1!b

z
)"!g(1!b

z
) sin/#hb

x
, (159)

where

h,
e
0
B

z
mu

,

u
@@

u
, (160)

and h is just the dimensionless frequency ratio analog to g. Now we see that the (1!b
z
) terms no

longer cancel out. However, the remaining two Lorentz force terms are completely unchanged and
we still have the extraordinary (and general) relationship that for pickup from rest

1!b
z
"

1
c

, (161)

so multiplying through by c gives

d(cb
x
)

d/
"!g cos/!hcb

y
, (162)

d(cb
y
)

d/
"!g sin/#hcb

x
. (163)

We see that we have a very simple driven linear coupled di!erential equation in just the two
variables cb

x
and cb

y
. Although h and g would seem to be on similar standings, this expectation is
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not correct because we can divide out g from the equation and all that does is to rescale the two
variables. Thus, we can symbolically rewrite the equations in such normalized form,

dm
d/

"!cos/!hg , (164)

dg
d/

"!sin /#hm , (165)

where m"cb
x
/g and g"cb

y
/g. These equations are identical to the non-relativistic ones! It is a bit

simpler to di!erentiate one of the equations with respect to / and eliminate one of the variables,
giving for example

d2m
d/2

" sin/!h
dg
d/

"(1#h) sin/!h2m . (166)

The resonance has nothing to do with the (1#h) sin/ term but follows from the harmonic solution
being at frequency / when h"1 in the h2m term. The textbook approach is as usual to look for
harmonic expressions for m and g, giving the solutions

m"!a sin/ , (167)

g"a cos/ , (168)

where

a"
1

1!h
(169)

and one then sees the resonance at h"1 corresponding to u"u
@@
. Although this resonance

condition is the obvious solution in the non-relativistic limit, it is a bit surprising to have exactly
the same solution in the relativistic case where the particles `surf a along with the wave and one
would not have been surprised to "nd the resonance Doppler shifted by one or more Lorentz
factors.

The homogeneous solutions are just those at frequency h and we have then for pickup at rest at
/"0

cb
x
"!

g
1!h

(sin/!sin h/) , (170)

cb
y
"

g
1!h

(cos /!cos h/) , (171)

cb
z
"

g2

(1!h)2
[1!cos (1!h)/] . (172)

F.C. Michel, H. Li / Physics Reports 318 (1999) 227}297 275



Fig. 16. Precession of the trajectory in velocity space for a non-zero longitudinal magnetic "eld.

The seemingly singular point at h"1 does not really `blow upa the solutions because when hP1,
the solutions become:

cb
x
"!g/ cos/ , (173)

cb
y
"!g/ sin/ , (174)

cb
z
"

1
2
g2/2 . (175)

These Cartesian solutions somewhat obscure what the particle is doing in velocity space, which is
to execute a circle for h"0 but the starting point (m"g"0) is not at the center of the circle but is
a point on the circle (obvious in retrospect), and for small h the circle precesses about this point,
as shown in Fig. 16.

10.3. Motion in space

The progress of the particle along z can easily be gotten because

dz
dt

"

dz
d/

d/
dt

"

dz
d/

u(1!b
z
)"

dz
d/

u
c

(176)

but we also have that

b
z
"1!

1
c

(177)

so all together

u
c

dz
d/

"c!1 . (178)
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However, it is easy to see that substituting arbitrary values for g and m into the Lorentz identity,
Eq. (148) gives

c"1#
1
2
[(cb

x
)2#(cb

y
)2]"1#

g2

2
(m2#g2) (179)

so we "nd that

z"
c
u

g2

2 P(m2#g2) d/ , (180)

which, for h"0, has the solution,

z"
c
u

g2(/!sin/) . (181)

Even though we opened our analysis with a discussion directed at electrons, the key conclusions
(cf. Eqs. (179) and (180)) only depend on g2, which is the same for electrons and positrons. Likewise,
solutions can be generalized to protons by simply replacing m

e
with the proton rest mass, and we

see immediately that protons or other ions would be accelerated to much lower energies.

10.4. Particle not starting at rest

If a particle starts with a non-zero b
z0

but b
x0
"b

y0
"0, we de"ne c(1!b

z
)"c

0
(1!b

z0
)"c

0
,
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0
)/(1#c2

0
) and c

0
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0
)/2c2

0
, one gets
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, (184)

c(1!b
z
)"c

0
, (185)

where h@"h/c
0
.

Alternatively, if b
z0
"0 but b

x0
"b

y0
O0, we de"ne c

0
"c

0
. Then cb

x0
"J(c2

0
!1)/2"d

0
. The

solutions are (again, h@"h/c
0
):
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g
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[ sin (h@/)!sin /] , (186)
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0
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cb
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"

g
c
0
(h@!1)Ad0#

g
h@!1B[1!cos (h@!1)/]!
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0

c
0
(h@!1)
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c(1!b
z
)"c

0
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In both cases, the resonant condition changes from h"1 to h/c
0
"1, which is obvious from the

requirement u!kv
z
"u

@@
/c.

10.5. Plasma dispersion ewects

An additionally curious feature of these equations that the reader may have noticed is that we
have assumed that u"ck at a number of places in the discussion. If we had a number of particles
picked up in place of a single one, the natural expectation would be that the coherent conduction
currents from these particles would modify the phase velocity of the wave, just as in the case of an
ordinary non-relativistic plasma. In every case, the same ratio u/k replaces c in every step of the
derivation, so the same results obtain even for a plasma dispersed wave. For our discussion of
particle motion in intense "elds, the linear assumption implicit in even discussing a disper-
sion relation becomes inapplicable. However, for other applications this observation may be of
some use.

11. Motion in realistic 5elds

Having discussed the particle motion in constant wave "elds, we move on to more complicated
situations.

11.1. Decreasing wave amplitude (still planar)

Given that we can solve for z as the phase / advances (e.g., Eq. (180)), we can ask what happens
when the wave "elds E and B (parameterized as g) and radial B "eld (h) vary with distance, as would
be the case for spherical waves instead of plane waves. To our knowledge, this second step of
complication cannot be done analytically. However, since the underlying equations of motion
become linear when we take the phase to be the independent variable, we have the advantage that
numerical solutions of linear equations mimic the exact solutions. Thus a harmonic oscillator
solved numerically (with appropriately small steps) gives exactly harmonic solutions, the only
di!erence being that the oscillation frequency is slightly di!erent from the continuum case (the
di!erence vanishes as the step size vanishes). The important point then is that there is no true
`errora in the numerical solution insofar as generic behavior goes. Consequently, introducing
additional (non-linear) terms does not introduce additional errors but rather is the only step that
introduces potential errors so long as we are basically interested in the generic behavior of systems
and do not require a precision simulation of a speci"c system.

Neglecting "rst h, it is easy to show that the e!ect of reducing g, the wave amplitude, with
distance causes the persistent y component of velocity to approach a constant "xed value which is
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slightly more than half its maximum value (if one instead models the variation in terms of
a monotonic dependence on / rather than z, the approach turns out to be more symmetrical
toward exactly 1/2). Fig. 17 shows this process. What is happening physically is that the wave
having become weaker is no longer able to bring the particle back to rest and ultimately the wave
becomes an irrelevant perturbation with all three components of momentum approaching "xed
values. The physics is somewhat di!erent if h, the magnetic "eld component parallel to the
propagation direction, is non-zero, because the persistent component of velocity now circles in the
B
z
"eld as shown previously in Fig. 16. The e!ect of precession in a declining wave "eld is

illustrated in Fig. 18. Thus one has a trade-o! depending on which is the faster, the decline in g or
the precession induced by h. If the former dominates, the system will approach nonzero values as
just discussed, but if the latter dominates the system will approach zero energy!

It is straightforward to solve the set of equations (e.g., Eqs. (162), (163), (179)) numerically by
introducing

g"g
0A

z
0
z B , (190)

h"h
0A

z
0
z B

2
, (191)

as would be the simplest behavior expected for the decline with distance from a pulsar for a wave
"eld and a frozen-in radial component of magnetic "eld, respectively, with z being the distance
along the spin axis. Using parameters believed to be appropriate for the Crab pulsar, we have

g
8;
"

e
0
B

0
mX A

a
R

8;
B

3
"9.5]1010 (192)

Fig. 17. Lorentz factor of a particle moving in a plane wave whose strength declines along the particle trajectory.

Fig. 18. Precession in velocity space of a particle in a declining wave "eld moving parallel to a static magnetic "eld.

F.C. Michel, H. Li / Physics Reports 318 (1999) 227}297 279



Fig. 19. Electron (or positron) energy development as a function of distance z!z
0

(starting from rest at various initial
distances z

0
) accelerated in a plane wave whose amplitude decreases as 1/z. Parameters appropriate for Crab pulsar are

used. The asymptotic energy and the pivoting distance beyond which electron shows large oscillations in energy are all in
good agreement with the analytic estimates. The initial enormous energy gain comes from the fact that particles are
picked up by and are almost in phase with the wave. The "rst decrease in energy marks the "rst time when a particle is out
of phase with the wave.

at the wave zone distance (sometimes called the `light-cylindera distance14) R
8;
"c/X (hereafter,

all distances are in units of R
8;

).
Fig. 19 shows the acceleration of electrons (or positrons) starting with di!erent initial g or

e!ectively, di!erent distances from the pulsar along the rotation axis. The parameter h is chosen to
be zero in all these runs. The overall trend is clear that the further away a particle starts, the lower
its "nal energy is. There also seems to be a `pivotinga behavior in electron's energy development in
that the further away a particle starts, the larger the `oscillationsa in its energy as a function of
distance. (Such behavior is more clearly seen in the spherical wave cases considered in the following
sections.) To qualitatively understand Fig. 19, recall that when previously g is a constant (and
h"0), the particle's energy is a periodic function of z with period 2ng2. In other words, a particle
starting from rest reaches its maximum energy when *z"ng2. Now that g decreases as 1/z, we can
de"ne a critical distance z

#
by equating

z
#
"n(g

8;
/z

#
)2 or z

#
"(ng2

8;
)1@3+3]107. (193)

14The term comes from earlier models discussed above that assumed centrifugal forces, not electromagnetic forces,
were dominant in pulsar activity. In that view, we could technically still be inside the `light-cylindera if on the spin axis.
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Thus, we are faced with two possibilities of either z
0
(z

#
or z

0
'z

#
, which are equivalent

to z
0
(*z and z

0
'*z, respectively. The pivoting behavior can be understood as follows:

Particles starting inside the critical distance z
#

will be continuously accelerated until they
reach beyond z

#
where particle starts to become out of phase with the wave and the strength

of the wave has decreased enough. That the actual `turning pointsa in Fig. 19 are larger than z
#

can be understood as overshooting since particles already have enormous energies as they
advance each decade in z. Particles starting beyond z

#
, on the other hand, will reach their

highest energy when *z"z!z
0
+n(g

8;
/z

0
)2. For example, at roughly the distance to knot 2

(the possible shock) for the Crab, we have z
0
"108, and *z&3]106;z

0
, so g(z) is e!ectively the

same as g(z
0
).

The maximum energy a particle can obtain in such "elds can be estimated again from the
constant g case (which is 2g2). Similarly,

c
.!9

+2A
g
8;
z
#
B

2
+2]107, z

0
(z

#
, (194)

c
.!9

+2A
g
8;
z
0
B

2
, z

0
'z

#
. (195)

The actual "nal energies shown in Fig. 19 are higher than the above estimate when z
0
(z

#
due to

the continuous acceleration between z
0

and z
#
. For z

0
'z

#
, the above equation gives a good

agreement. Lower particle energies also enable waves to `take backamost of the particle energy as
the particle moves in and out of phase with the wave, as evidenced by the large amplitude
oscillations in c(z).

11.2. hO0 case

By letting h
8;
"g

8;
at the wave zone distance, we can explore the e!ects due to a nonzero B

z
.

Since h&1/z2, the condition for h"1 will occur at z&3]105. On the other hand, the particle
dynamics is still controlled by staying in phase with the wave due to the large wave amplitude
(i.e., g&1/z), the Lorentz force due to p

x,y
B

z
is comparatively insigni"cant until the particle

starts to slip out of phase with the wave. By that time, the distance is so large (z5z
#
) that

wave becomes so weak that it could not strongly a!ect particle motion anymore. When starting
at z"104, Fig. 20 shows that there is essentially no di!erence in electron energy gain with hO0.
Fig. 21 compares the electron and positron energy gain with hO0. Again, only little di!erence
is seen.

Although the resonance does not play a role in the particle's dynamics, if a particle is starting
very close to the wave zone, the B

z
component will become important. A distance can be roughly

estimated by balancing the two Lorentz force components, g
8;

/z&p
x,y

g
8;

/z2, which gives z&p
x,y

.
So, during the acceleration phase, if p

x,y
exceeds z, the particle will experience gyration around B

z
,

thus limiting the magnitude of the transverse momentum. Consequently, the particle "nal energy is
reduced also.
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Fig. 20. Upper panel shows the energy development of an electron accelerated in a planar wave as a function of distance
z!z

0
starting from rest at z

0
"104. Lower panel shows the corresponding evolution of the transverse momentum.

Parameters appropriate for Crab pulsar are used. The solid and dashed curves are for h"0 and h"g
8;

/z2, respectively.
It is clear that there is hardly any di!erence between these two cases.

11.3. Motion in spherical waves

The true "elds from a rotating pulsar will be spherical instead of planar at large distances. As we
will show, there is a subtle but important "rst order error if the spherical wave is treated as simply
a plane wave whose strength drops appropriately with distance (i.e., the discussion in the proceed-
ing section).

For an orthogonal rotator (sin m"1), the pure spherical vacuum wave along the rotation axis
(cos h"1) can be expressed as

B
r
"E

r
"0 , (196)

Bh"!E
(
/c"B

8;
cost

1
R

, (197)
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Fig. 21. Upper panel shows the electron and positron energy development accelerated in a planar wave as a function of
distance z!z

0
starting from rest at z

0
"104. Lower panel indicates the changes in the transverse momentum.

Parameters appropriate for Crab pulsar are used. The solid and dashed curves are for electron and positron, respectively.
Again, h"g

8;
/z2. There is only very little di!erence between electrons and positrons due to a non-zero h.

B
(
"Eh/c"!B

8;
sint

1
R

, (198)

where R"r/R
8;

is the dimensionless radial distance, B
8;
"B

0
(a/R

8;
)3 is the B "eld at

R
8;

, t"/#R!Xt"/!/
s
, and /

s
"Xt!R. For the sake of completeness, we write out the

Lorentz equation of a charged particle q in spherical coordinates by taking the dot product of e(
r
, e( h,

and e(
(

with dp/dt"q(E#*]B), since it proves fruitful to think of the particle motion in Mr, h,/N
rather than Mx, y, zN as in the planar case. Substituting the above expressions for "eld components,
we can write the three components plus energy equation as (see also [33]).

dp
r

ds
"

p2h#p2
(

R
!g

8;

q
DqD

1
R

(ph sin t#p
(
cos h cost) , (199)

dph
ds

"

p2
(
cot h!p

r
ph

R
!g

8;

q
DqD

1
R

(c!p
r
) sint , (200)

dp
(

ds
"!

php( cot h#p
r
p
(

R
!g

8;

q
DqD

1
R

(c!p
r
) cosh cos t , (201)
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dc
ds

"!g
8;

q
DqD

1
R

(ph sint#p
(
cos h cost) , (202)

dw
ds

,

d(c!p
r
)

ds
"!

p2h#p2
(

R
, (203)

where we de"ne here the dimensionless proper time interval ds"Xdt/c, the dimensionless
momentum components p

r
"cb

r
"dR/ds, ph"cbh"Rdh/ds, and p

(
"cb

(
"R sin hd//ds. A

new variable w"c!p
r
is used to indicate whether a particle hogs most of its energy in radial com-

ponent or whether it is gaining energy in the transverse components. The "rst terms on the right-hand
side are geometric terms due to the fact that e(

i
) de(

j
/dt is usually not zero, or they can be thought of

as inertial terms (e.g., centrifugal and Coriolis forces) in the non-Cartesian coordinate system.
It is tempting to solve the equations directly in spherical rather than Cartesian coordinates,

which is indeed convenient for particles starting with large h, say, from the equator. But for
particles starting along the rotation axis (h"0), there is an awkward singularity (cot h) in the h and
/ momentum equations, which complicates numerical calculations. One way to get around is to
solve the Cartesian equations when h is very small but switch to spherical coordinates otherwise.15
Ostriker and Gunn [2] considered the special case with particles starting at the equator (h"n/2),
e!ectively removing this singularity.

This set of Lorentz equation proves to be harder to solve than its counterpart in the planar wave
case, mainly due to the fact that one has to track the phase term t"/!/

4
very carefully since it is

a function of both time and position. The time derivative of a quantity X can be expressed as
dX/ds"(dX/d/

4
)(d/

4
/ds) and d/

4
/ds"c(1!b

r
). In the planar wave case, / is not de"ned (thus is

a constant e!ectively), and c(1!b
z
),1, which allows a great simpli"cation by transferring time

derivatives into phase derivatives. As shown in Eq. (203), c(1!b
r
) is not a constant in the spherical

wave. In fact, as we will show below, c(1!b
r
) varies from 1 to &1/c.

On the other hand, Ostriker and Gunn [2] argued that the phase /
4
does not change appreciably

for particles close to the light-cylinder and with this important simpli"cation, they were able to
obtain some analytic solutions for a test particle picked up by a plane-polarized spherical wave
from the equatorial plane (h"n/2). Here, by rigorously tracking the phase and solving the full set
of equations, we are able to con"rm the key assumption used in [2] and explore parameter regimes
when this assumption is not applicable. For example, when particles start at large distances, they
experience large variations in the angle /. Another example is when the full Deutsch "elds are used,
which will be discussed in the next section. An additional motivation for accurate motion
determination is the consequent implications for calculating its radiation in the pulsar "elds.

Fig. 22 shows the particle energy in a spherical wave as a function of R starting with di!erent
heights on the spin axis z

0
. Again, we see a `pivotinga behavior in the particle energy development

depending on whether z
0
(z

#
or not, where z

#
is the same as Eq. (193). Particles starting within

z
#

are continuously accelerated without any decrease in energy whereas particles starting with
z
0
'z

#
show large energy `oscillationsa, and the run with z

0
"z

#
+4]107 indicates the transition

between these two types of motion.

15The codes used to solve the equation of motion in this and following sections can be obtained by contacting Hui Li
at hli@lanl.gov.
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Fig. 22. Electron (or positron) energy development as a function of distance r!r
0
accelerated in a spherical wave whose

amplitude decreases as 1/r. Parameters appropriate for Crab pulsar are used with m"n/2 and particles are placed at rest
on the rotation axis with various initial heights z

0
. All length scales are in units of R

8;
+1.5]108 cm. For

z
0
(z

c
"3]107, particles reach maximum energy in &2r

0
and no energy decrease is seen because particles have not yet

been overtaken by another cycle of the wave. Note the di!erences when compared with the plane wave case (Fig. 19).

In order to better understand the results in Fig. 22, we can describe the initial motion of an
electron in a pure spherical wave by "rst considering a tiny increase in /

4
"Xt!R from 0Pe.

This makes tP!e which implies E
(
+!1 and Eh+0. Thus the angle / changes from 0Pn/2

as soon as electron moves away from the axis, which then makes t+n/2!e. Consequently,
sint+1 and cost+0. The equation of motion of an electron can then be further simpli"ed
(making use the fact that p

(
;p

r
, ph) as

dp
r

ds
+

p2h#g
8;

ph
R

, (204)

dph
ds

+

!p
r
ph#g

8;
w

R
, (205)

dc
ds

+

g
8;

ph
R

, (206)

dw
ds

+!

p2h
R

. (207)
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Armed with these simple equations, we note the following features of particle motion in a pure
spherical wave:

First, the physics for this strong particle acceleration follows because particles stay more in
phase with the wave. Note that even though the wave is circularly polarized along the spin axis,
elliptically polarized at some intermediate h angle and plane polarized at the spin equator,
a particle picked up from rest essentially sees a plane polarized wave (e.g., Eh+!1 and E

(
+0 in

the above example). So the analysis by [2] applies here. Eq. (207) shows that c(1!b
r
) is driven from

1 at t"0 to ;1 at later time, giving

b
r
P1!

1
2c2

, (208)

or equivalently, bh, b
(
P0. Notice that the equivalent expression for a plane wave is

b
z
"1!

1
c

. (209)

When using parameters typical of the Crab pulsar nebula, the extra power of c at large values of
this parameter makes a huge di!erence in the asymptotic behavior, with the e!ect that a particle
(even though it is moving at less than the speed of light), will for all practical purposes never be
overtaken by another cycle of the wave, i.e., it will be at such huge distances that interaction with
the local interstellar medium will become dominant. For example, in order for /

4
to increase by n,

Xt has to be &2nc2, which would require a distance of &100 kpc (!) if c&107. This behavior is
not what one would get for a plane wave whose strength is made to drop, because there the particle
ends up with a non-zero transverse momentum, and the proper velocity parallel to the (plane)
wavefront does not represent the proper velocity parallel to the curved wavefront, which is
asymptotic to the total proper velocity of the particle, as illustrated in Fig. 23. Treating the wave as
plane gives us instead Eq. (209) so that particle is constrained in z propagation and slips out of
phase with the wave at Xt&nc.

Second, the total amount of energy a particle can get depends on the transverse momentum
ph and p

(
. This is not surprising since an electron has to move parallel to the electric "eld to gain

energy. Above equations indicate that for particles starting from rest, ph will increase "rst, so will

Fig. 23. Edge-on view of plane and spherical wave showing that the velocity vector is signi"cantly closer to the spherical
wave when there is a velocity component parallel to the wave front.
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Fig. 24. The details of an electron's energy development and position changes for z
0
"100 (left panel) and z

0
"108 (right

panel) respectively. Notice the di!erent scales for these two cases. All other parameters are the same as in Fig. 22. Note
that electron reaches its maximum energy when ph is the largest. Also, c!p

r
"c(1!b

r
)+1/(2c

=
)&10~8 and

&3]10~7, respectively.

c and p
r
(w+1). The continuous growth of c depends on ph being positive. But Eq. (205) implies

that ph will reach a maximum when g
8;

w"p
r
ph, from which point ph starts to decrease. The

decrease of ph will eventually diminish the increase of c and the decrease of w implies that essentially
all the particle's momentum is in e(

r
direction. Consequently, particle starts `coastinga in energy

with ph, p(, and w all asymptotically being zero.
Fig. 24 shows in greater detail the evolution of several key quantities with z

0
"100 (left panel)

and z
0
"108 (knot 2 distance in Crab nebula, right panel). One can see that for z

0
"100,

ph stays positive so particle energy c never decreases. This is not true for z
0
"108, in which case

the wave is much weaker, a particle, even though still gains quite an amount of energy, re-
peatedly goes out of phase with the wave (note also the oscillations in ph and p

(
) and conse-

quently will be brought to rest and be reaccelerated, until the particle has gone far enough
that the wave is too weak to bring particle completely to rest. In both cases, the main
particle motion in real space is straight up along the spin axis. For z

0
(z

#
, there is a tiny

translation away from the rotation axis with no `circulationa since / stays essentially constant.
Whereas for z

0
'z

#
, there is a rotation about the axis that is translated away from the spin axis

(due to positive ph).
Third, particles obtain the same asymptotic energy as long as z

0
(z

#
and they reach that energy

at R&2z
0
. This is quite di!erent from the planar wave case (i.e., comparing Figs. 19 and 22). To
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estimate the asymptotic particle energy in spherical wave, we can take the ratio of Eqs. (206)
and (205),

dc
dph

+

g
8;

ph
g
8;

w!p
r
ph

(210)

which at early time (w+1 and p
r
ph;g

8;
) gives c+p2h . On the other hand, ph will reach its

maximum when g
8;

w"p
r
ph, which implies ph+g

8;
/c. Equating c+p2h and ph+g

8;
/c, we get

c+g2@3
8;

+2]107 (211)

which is in good agreement with Fig. 22. Note that this dependence is quite di!erent from the
planar wave case in Eq. (194). In estimating the "nal energy, there is no distance scale involved
(as long as z

0
(z

#
). We can roughly estimate the distance where c

.!9
is reached by noting that

ds"Xdt/c+dR/c. Substituting this into Eq. (206), we get

dR
R

+

dc3@2
g
8;

N*R+R . (212)

This is again in agreement with Fig. 22. Note that c
=

in spherical wave is smaller than the planar
waves because particle motion is slightly more limited in transverse directions, whereas transverse
motion/displacement is necessary for particle to gain energy from the E "eld. This di!erence is
evident by comparing the amplitude of transverse momentum in Figs. 20 and 24.

The results given in Eq. (211) also agree with those in [2], where cJg2@3
8;

(1!R
0
/R)2@3. When

*R"R!R
0
;R

0
, this indicates that c increases as *R2@3, which is in perfect agreement with

Fig. 22.
For z

0
'z

#
, the "nal particle energy is determined by &2(g

8;
/z

0
)2, which is the same as in the

planar wave case (cf. Eq. (195)) for the same physical reason. This again agrees with Fig. 22.

11.4. Motion in Deutsch xelds

The Deutsch "elds at R<R
8;

are given in Section 7 but are recaped here,

B
r
+2B

8;

1
R2

sin m sin h sint ,

E
r
+B

8;

c
R2

2
3
cos m ,

Bh+!E
(
/c+B

8;

1
R

sin m cos h cost ,

B
(
+Eh/c+!B

8;

1
R

sin m sint . (213)
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It is straightforward to write down the equation of motion of a charged particle q in Deutsch "elds
(without radiation reaction). De"ne B@/R"B/B

8;
and E@/R"E/(cB

8;
), it reads

dp
r

ds
"

p2h#p2
(

R
#g

8;

q
DqD

1
R

(cE@
r
#phB@

(
!p

(
B@h) , (214)

dph
ds

"

p2
(
cot h!p

r
ph

R
#g

8;

q
DqD

1
R

(cE@h#p
(
B@
r
!p

r
B@
(
) , (215)

dp
(

ds
"!

php( cot h#p
r
p
(

R
#g

8;

q
DqD

1
R

(cE@
(
#p

r
B@h!phB@

r
) , (216)

dc
ds

"g
8;

q
DqD

1
R

(p
r
E@
r
#phE@h#p

(
E@
(
) , (217)

dw
ds

"!

p2h#p2
(

R
#g

8;

q
DqD

1
R

(!wE@
r
#ph(E@h!B@

(
)#p

(
(E@
(
#B@h)) . (218)

The Deutsch "elds are asymptotically pure spherical vacuum waves for su$ciently large R, so only
when particles start close to R

8;
are there signi"cant di!erences. So one would expect the same

particle behavior as described in spherical wave case when R is su$ciently large (we will quantify
this statement soon).

We again consider an orthogonal rotator (sin m"1) with an electron starting on the spin axis.
Fig. 25 shows particle's energy development in Deutsch "elds. Again, the physics for particle
acceleration is unchanged compared to the pure spherical wave case. And indeed, particle's
behavior is the same as in a spherical wave when z

0
'104.

Comparing with the pure spherical wave (cf. Fig. 22), Fig. 25, however, depicts marked di!erence
when z

0
4104 (the change is obviously continuous). To understand this di!erence, we again follow

the arguments in deriving Eqs. (204)}(207) where t"n/2$e. We obtain

dp
r

ds
+

p2h#g
8;

ph
R

, (219)

dph
ds

+

!p
r
ph#g

8;
w

R
, (220)

dc
ds

+

g
8;

ph
R

, (221)

dw
ds

+!

p2h
R
#

g
8;

ph
R

(B@
(
!E@h) , (222)

which are the same as Eqs. (204)}(207) except the last equation on dw/ds where we keep an extra
term. Using the expressions given in Section 7, it can be rigorously shown that B@

(
!E@h+

sint/R2+1/R2, diwerent from spherical wave where B@
(
!E@h,0. Even though this di!erence is
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Fig. 25. Similar to Fig. 22 but in Deutsch "eld of an orthogonal rotator instead of a pure spherical wave. Particles are
more strongly accelerated in a Deutsch "eld when starting relatively close by (z

0
4103).

much smaller than the strength of the "eld itself (1/R vs. 1/R2), it constitutes an important
contribution in Eq. (222) because g

8;
/R2 can still be much larger than ph. This seemingly `smalla

di!erence is solely responsible for the large increase in c when z
0
4104 in Fig. 25. We now discuss

why this is the case.
Eq. (222) guarantees that w"c!p

r
should increase initially since g

8;
/R2'ph. This is contrary

to the spherical wave case where w is always decreasing. Physically it means that not all the energy
is going into the radial momentum, and the increase in w makes the maximum ph even larger. As
discussed before, the larger the ph, the higher the c. As both ph and R increase, it comes to a point
when g

8;
/R2"ph (or dw/ds"0) which implies R+(g

8;
/ph)1@2+104 if ph&103. This is consistent

with Fig. 25 in which the run of z
0
"104 already shows a slightly higher "nal c. Eventually, w starts

to decrease and becomes much less than one (i.e., radial component hogs all the energy), particle
starts to coasting with the wave with no transverse momentum. Fig. 26 compares the di!erent
behavior for an electron in Deutsch "elds and spherical wave with the same initial z

0
"100. It

con"rms the above analytic estimates.

11.5. Role of a non-zero B
r

The e!ect of a non-zero B
r
is unimportant in the cases we considered here because particles are

picked up at the rotation axis (i.e., sin h+h;1). This, however, is not the case if a particle starts at
the equatorial plane of the rotation axis.

290 F.C. Michel, H. Li / Physics Reports 318 (1999) 227}297



Fig. 26. A detailed comparison of an electron's energy development (starting at z
0
"100) in a Deutsch "eld (solid lines)

and a pure spherical wave (dashed lines). The fact that c!p
r
can be much larger than 1 results in a much larger ph, thus

rendering higher asymptotic particle energy in the Deutsch "eld.

In the planar wave case, we have discussed the e!ect of a nonzero B
z

by pointing out the
possibility of resonance via c(1!b

z
)"(eB

z
/m)/X, or, h"eB

z
/mX"1 because c(1!b

z
) is

always 1. We also showed that this resonance does not really in#uence the dynamics of particle
motion. In the spherical wave (or Deutsch "eld) case, there is an equivalent resonant condition
due to a non-zero B

r
,

c(1!b
r
)"

eB
r

mX
. (223)

We can see that the resonant condition changes from h"1 in the planar wave case to
h"c(1!b

r
)+1/2c;1 for spherical waves. Using c&2]107, this requires an exceedingly small

B
r
(&3]10~13G when X+200 rad/s), which is impractical. Physically, it means that a particle is

moving along B
r
so close to the speed of light, the wave frequency seen by the particle is very small.

The actual B
r
will always be much larger than the required B

r
given above for resonance to

occur. Though B
r
does not in#uence the particle dynamics via resonance, it could potentially have

a strong e!ect on a particle motion by forcing the particle into gyration if ph and p
(

are large
enough. Imagine instead of B

r
decreases continuously as 1/r2, it approaches a constant after some

"nite distance, then depending on the strength of B
r
and the magnitude of transverse momentum, it

will reduce the particle "nal energy by limiting the maximum transverse momentum. For this e!ect
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to occur, the Lorentz force components due to phBr
and p

(
B

r
have to be important during the

acceleration phase. Otherwise, during the `coastinga stage, even if B
r
is comparable to Bh and B

(
, it

will not make any di!erence because ph and p
(

are essential zero.

11.6. Ions, positrons vs. electrons

For an orthogonal rotator, the energy development of electrons and positrons is essentially
indistinguishable when z

0
'100. For an inclined rotator (mOn/2), the electric dipole "eld E

r
due

to the central charge (2/3 cos m) cannot be completely ignored even when launching particles in the
wave zone. One tends to think that the presence of a positive E

r
helps (hinders) positrons (electrons)

gaining energy. But the gained energy is in the radial component, which hinders (helps) positrons
(electrons) gaining transverse momentum. So, these two e!ects tend to cancel each other, and
the net di!erence in "nal energy between an electron and a positron is less than 10% when
z
0
"100 (not shown here). This dipole "eld, however, could be important for particles injected at

the wave zone.
We have also studied the proton motion in the same Deutsch "eld and Fig. 27 indicates that they

follow basically the same behavior as electrons except to reduce g
8;

by m
p
/m

e
. Thus, protons

asymptotically reach a Lorentz factor of &105 (i.e., &1014 eV) versus c&2]107 (i.e., &1013 eV)
for electrons. This is very di!erent from parallel electric "eld acceleration where electrons and ions
are expected to gain the same energies on average.

Another e!ect which is not discussed here is that the electron motion in real space is di!erent
from that of positron, even though they gain the same energy (probably at the same rate). This

Fig. 27. Similar to Fig. 25 but for protons. The asymptotic energy is approximately reduced by a factor of (m
1
/m

%
)2@3.
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might produce charge separation in space between electrons and positrons as they are accelerated
away.

11.7. Plasma dispersion ewects

So far, we have been studying the dynamics of a test particle injected into the wave zone of
a vacuum wave "eld (E"cB) from an inclined magnetic rotator. Thus, the generic picture is that
strong waves `draga particles with themselves and accelerate them to extremely high energies.
Obviously when enough particles are injected into this "eld, wave energy will likely be absorbed by
particles and instead one has a relativistic MHD #ow (see the next section). Ostriker and Gunn [2]
pointed out that vacuum-like propagation of the wave requires the wave frequency to exceed the
e!ective plasma frequency, which implies an upper limit of the particle injection rate into the wave
zone, above which MHD theory should apply. Arons [34] further discussed this point and argued
that most pulsar theories predicted higher particle injection rates. Another argument that has been
discussed in literature is that even if the particle injection rate is low enough so that the wave
frequency is still above the plasma frequency, the wave will have a phase speed E/B'c. Since the
basic mechanism discussed in previous sections relies so critically on the `phase-lockinga between
the particle and the wave, even a little plasma will `destroya this matching. Here, we want to show
that particles actually are accelerated even more strongly when the wave has E/B'c, contrary to
the common conception.

We will follow the approach in Ref. [2] since it is analytically much simpler and tractable. Near
the equatorial plane of the rotation, we modify the plane-polarized spherical wave as the following:

B
r
"E

r
"0 , (224)

Bh"E
(
"0 , (225)

B
(
"!B

8;
sint

1
R

, (226)

Eh
c
"!f B

8;
sin t

1
R

, (227)

where we have introduced a factor f (51) to mimic the e!ects of plasma dispersion causing
E/B'c. The simpli"ed Lorentz force on an electron is then

dp
r

ds
+

p2h
R
#

g
8;
R

ph , (228)

dph
ds

"

!p
r
ph

R
#

g
8;
R

( fc!p
r
) , (229)

dc
ds

"

g
8;
R

fph , (230)

dw
ds

,

d(c!p
r
)

ds
"!

p2h
R
#( f!1)

g
8;
R

ph . (231)
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Note the additional positive ( f!1) term in dw/ds. This is very similar to the Deutsch "eld case (cf.
Eq. (222)) where w"c!p

r
is shown to increase "rst (cf. Fig. 26). Physically, the larger E (or f'1)

ensures that a larger transverse momentum ph will be reached, hence the particle's "nal energy will
increase. Carrying out the detailed derivations, one "nds that

ph+(2wc#( f 2!1)c2)1@2 , (232)

where the "rst term on the right-hand-side is the original Ostriker and Gunn solution. If we
approximate f"1#e with e;1, then we have two possibilities. One is that w"c!p

r
'ec or

e(1!p
r
/c for all c, then the perturbation f on the wave is so small that it gives essentially the

same results as if E/B"c. On the other hand, if e'1!p
r
/c, then the rate of increase of ph can be

much higher. Consequently, we get

c+J2e f 2g
8;

ln(R/R
0
) , (233)

which can be compared to the result from [2]

c+g2@3
8;

(1!R
0
/R)2@3 . (234)

Note the di!erent power dependence on g
8;

.
Let's use the Crab pulsar as an example. We will assume e"10~5. As a particle is accelerated

from rest, the initial behavior should be the same as in a pure vacuum wave until ec&1, after which
ph is dominated by the ( f 2!1)c2 term in Eq. (232). So, there will be an enhanced acceleration after
c'1/e&105. Furthermore, during this enhanced acceleration, particle's c should increase as
*R"R!R

0
as predicted by Eq. (233). This is di!erent from Eq. (234) where c increases as *R2@3.

Eq. (234) also implies that acceleration essentially stops when, say, R"2R
0
, where Eq. (233) will

predict a continuing acceleration for R<R
0
, though it gradually levels o! also. All these features

are con"rmed in Fig. 28.
Since g

8;
&1011 for Crab pulsar, we can also estimate a critical e+5]10~8, above which the

"nal energy reached in a wave with E/B'c can be substantially higher than that in a pure vacuum
wave E/B"c.

11.8. Comparison with MHD wind solutions

In the MHD relativistic wind models from pulsars, a critical parameter is the dimensionless ratio
of the Poynting #ux in the magnetized wind to the rest mass energy #ux carried by the particles, or

p"
B2

k
0
fmc2

, (235)

where f is the number #ux of particles cross a sphere of radius r as counted in the rest system. Since
B+1/r, the value of p is independent of radius and is therefore a constant of the motion for
the #ow. If one can estimate the particle injection rate and magnetic "eld at some known distance,
one can estimate p [35]. Furthermore, one can infer from p what the asymptotic Lorentz factor of
the #ow might be, the usual estimate being [35]

c+p1@3 . (236)
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Fig. 28. A comparison between the electron acceleration in a pure vacuum wave (E/B"c) and a wave mediated by some
plasma (E/B'c). Parameters similar to Crab pulsar are used.

Kennel and Coroniti [36] have applied such models to the Crab pulsar, but have chosen to use
a di!erent de"nition (which we designate p*),

p*,
p
c
. (237)

Here the dimensionless ratio p* measures the relative energy #ux in the "elds versus the
particles. The motivation seems to come from the idea that observation might more easily
constrain p* (which in turn determines the power input from the pulsar to the nebula) than
p (which requires an estimate of both B and the injection rate). However, from a theoretical
point of view p signi"es a boundary condition for the #ow while p* speci"es a solution that
results from this boundary condition. As a result, considerable confusion has been propagated
in follow-on papers: if a paper speci"es p, the goal is likely to be to calculate in e!ect the
asymptotic Lorentz factor, while if a paper speci"es p*, it is assuming that the relative power
outputs are known, and the goal may or may not to be to see if that number can be theoretically
justi"ed.

For the Crab pulsar parameters, both the MHD and the particle pickup estimates are similar,
c+107, but we have to regard this similarity to be something of a coincidence. For a single particle
introduced into a vacuum electromagnetic wave from a vacuum rotator, both p and p* would
be in"nite. Indeed, we could turn the problem around and calculate what particle #ux could be
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tolerated before the wave energy was largely transfered to the particles. Then in a sense we
would be looking for solutions with p*+1. Such wave-particle calculations are of high interest,
but given that the phase-locking is such a delicate but important issue even in the vacuum case,
and given that particle loading will perturb the wave phase as part of the loading mechanism, all
the present calculations can serve for is as a template for future many particle or MHD-like
calculations.

11.9. Radiation reaction and quantum corrections

Since particles are accelerated to extremely high energies (c&107}108) and the magnetic "eld is
reasonably strong, it is natural to ask whether particle energy gain process is balanced by radiation
damping long before the particle gets these extreme energies. Shen [37] presented a thorough
discussion of these issues and the validity of classical electrodynamics with possible quantum
corrections.

The radiation reaction of relativistic particles depends on the magnitude and direction of
acceleration, regardless of the speci"c cause of acceleration. If particles always start from rest, Shen
[37] has argued convincingly that the radiation reaction (damping) e!ect is almost negligible. The
main reason for this is that the radiative damping force depends on both the particle's energy and
the angle between the particle's motion and the "eld. The particle tends to align itself to have
minimum perpendicular acceleration. This is not the case when the particle enters the "elds with
a large Lorentz factor.

However, the issue of single-particle radiation reaction is something of a red herring given
that su$cient particle #uxes should be leaving an active pulsar to act like a plasma and
the coherent radiation reaction on a plasma is generally huge compared to Thomson scattering
o! the individual particles. Since the quasi-linear plasma theory is not even close to being
valid for the large amplitude waves from pulsars, entirely new approximations will have to be
developed.

12. Conclusions

Our intention for Part I (Sections 1}7) is to provide a standard set of background "elds as
starting points for pulsar theoretical modeling. It is not an intention to be dictatorial in the sense
that these "elds must be used, but rather again to establish a standard for comparison. If an author
wishes for whatever reason to omit yet again the central charge on an aligned rotator, so be it but
please at least explicitly admit it and not leave it to the reader to puzzle through the results before
suddenly realizing that omission.

Insofar as Part II (Sections 8}11) goes, here again we hope to at least establish the minimal
consequences of plasma from the pulsar being injected into the "elds of Part I. Even there we have
been able to do little more than scratch the surface. Issues remain unresolved such as how the non
neutral plasma is arrayed about an inclined rotator, how to best model pair production, where
transitions from corotation in the inner magnetosphere to wave pickup in the outer magnetosphere
takes place, and ultimately, what do any of these models have to do with the radio pulsars that they
are expected to simulate.
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