
CME 193: Introduction to Scientific Python
Lecture 3: File I/O, Object-oriented Python, and

Intro to NumPy

Austin Benson

Dan Frank

Institute for Computational and Mathematical Engineering
(ICME)

April 11, 2013



1

Administrivia

File I/O

Object-oriented Python

Intro to NumPy



Homework

I Overall, good job on homework 1.

I Homework 2 is due right now.

I Homework 3 is posted (longer than the first two assignments).



importing SciPy

# Example from:

# http://www.scipy.org/scipy_Example_List

# incorrect

from scipy import *

# correct

from scipy import integrate

value, err = integrate.quad(func=pow, a=0.,

b=1., args=(5,))

value # integral of x^5 over [0,1]



2

Administrivia

File I/O

Object-oriented Python

Intro to NumPy



Programming Languages and the system

I Matlab encourages a separation between the program and the
computer system

I C provides powerful ways to control the computer system, but
the code is verbose

I Python makes it very easy to interact with the computer
system in basic ways



Python and the system

I For scientific computing, this balance between power and ease
of programming makes Python a popular choice

I Today, we will focus on file I/O as our interaction with the
computer system

I Please check out the os library (operating system):
http://docs.python.org/2/library/os.html.

http://docs.python.org/2/library/os.html


File reading

Suppose we have a text file of chemical compounds:

salt: NaCl

sugar: C6H1206

ethanol: CH3CH2OH

ammonia: NH3

We want to read this file and store the information in a dictionary.



File reading

f = open(’compounds.txt’, ’r’)

’r’ specifies that we want to read the file.

f is now a file object



File reading

Print the entire contents of the file:

f = open(’compounds.txt’, ’r’)

contents = f.read()

print contents



File reading

Print each line individually:

f = open(’compounds.txt’, ’r’)

for i, line in enumerate(f):

print ’(Line #’ + str(i + 1) + ’) ’ + line

Prints “(Line #1) salt: NaCl”, etc.



File reading

A verbose dictionary formulation:

f = open(’compounds.txt’, ’r’)

compounds = {}

for line in f:

split_line = line.split(’:’)

name = split_line[0]

formula = split_line[1]

formula = formula.strip()

compounds[name] = formula

f.close()



File reading

The “with” statement closes the file automatically. A more
Pythonic implementation:

compounds = {}

with open(’compounds.txt’, ’r’) as f:

for line in f:

compounds[line.split(’:’)[0]] = \

line.split(’:’)[1].strip()



File reading

One liner:

compounds = dict([(line.split(’:’)[0],

line.split(’:’)[1].strip()) \

for line in open(’compounds.txt’,

’r’)])

... might be a bit much for one line.



File writing

Now we are going the other way. We have data in our Python
program that we want to store.



File writing

Suppose we have scraped some web data from www.reddit.com.

www.reddit.com


File writing

reddit data.py:

d1 = {’title’: "The eyes says it all",

’sub’: ’aww’, ’comments’: 595}

d2 = {’title’: "From typical youtube upload " + \

"to serendipity in 30 seconds",

’sub’: ’AskReddit’, ’comments’: 6494}

d3 = {’title’: "Use a decent host or don’t " + \

"even try at all...",

’sub’: ’AdviceAnimals’, ’comments’: 95}

data = [d1, d2, d3]



File writing

from reddit_data import *

with open(’reddit1.txt’, ’w’) as f:

for point in data:

f.write(str(point) + ’\n’)

Note that we request write permission with ‘w’ when opening the
file.



File writing

Result:

{’sub’: ’aww’, ’comments’: 595, ’title’: ’The eyes says it all’}

{’sub’: ’AskReddit’, ’comments’: 6494, ’title’: ’From typical youtube upload to serendipity in 30 seconds’}

{’sub’: ’AdviceAnimals’, ’comments’: 95, ’title’: "Use a decent host or don’t even try at all..."}

any problems with this output?



File writing

We might want a little more structure to the output file:

from reddit_data import *

with open(’reddit2.txt’, ’w’) as f:

for i, point in enumerate(data):

data = ’Post #%d\n’ % i

data += ’\t%s\n’ % point[’title’][0:20]

data += ’\t\t%s (%d)\n’ % (point[’sub’],

point[’comments’])

f.write(data)



File writing

Result:

Post #0

The eyes says it all

aww (595)

Post #1

From typical youtube

AskReddit (6494)

Post #2

Use a decent host or

AdviceAnimals (95)



3

Administrivia

File I/O

Object-oriented Python

Intro to NumPy



Classes

Classes:

I containers of data, information, and ideas

I basis for object-oriented programming



Python Classes

More specifically, Python classes:

I contain “instance variables” as data

I contain functions (sometimes called “methods” in the context
of classes)

I structure can change on the fly



Differences from traditional OO

In languages like C++ and Java, classes provide data protection
(public/private functions, friend classes, etc.). In Python, we just
get the basics like inheritance.

It is up to the programmer to not abuse the classes. This works
well in practice, and the code remains simple.



Stock Prices

class Stock():

def __init__(self, name, symbol, prices=[]):

self.name = name

self.symbol = symbol

self.prices = prices

google = Stock(’Google’, ’GOOG’)

apple = Stock(’Apple’, ’APPL’, [500.43, 570.60])

print google.symbol

print max(apple.prices)



Constructors

The init () function is the special class constructor. It is the
function that gets called when we make the statement:

Stock(’Google’, ’GOOG’).



self

The self parameter is a little weird.

The self variable is a reference to the class object that you are
modifying. For example:

self.symbol = symbol.

says to modify the instance variable symbol in this class
instantiation. On the right-hand-side, symbol is the name of a
local variable (from the parameters).



Functions in classes

Classes can have functions:

class Stock():

def __init__(self, name, symbol, prices=[]):

self.name = name

self.symbol = symbol

self.prices = prices

def high_price(self):

if len(self.prices) is 0:

return ’MISSING PRICES’

return max(self.prices)

apple = Stock(’Apple’, ’APPL’, [500.43, 570.60])

print apple.high_price()



Functions in classes

Notice how the high price() function uses self to get the
maximum price from that particular stock.



Glorified dictionaries?

If you think that classes are like dictionaries, you are right:

def Stock(name, symbol, prices=[]):

def high_price(_self):

if len(_self[’prices’]) is 0:

return ’MISSING PRICES’

return max(_self[’prices’])

s = {’name’: name, ’symbol’: symbol,

’prices’: prices}

s[’high_price’] = lambda(x): high_price(s)

return s

apple = Stock(’Apple’, ’APPL’, [500.43, 570.60])

print apple[’high_price’](None)



Glorified dictionaries?

The dictionary version is messy, and classes are cleaner.

The subject of how to implement classes is material for a
Programming Languages/Compilers course.



Inheritance

Inheritance is a way for classes to share structure.

A class can “inherit” the functions and data from a parent class.



Stock options

A stock option is like a stock. When purchasing a stock option, we
purchase the “right to buy” the stock at a certain price at a
certain time in the future.

We want to augment our Stock class with information about the
option.



Stock options

from stocks2 import *

class StockOption(Stock):

def __init__(self, name, symbol,

opt_price, date, prices=[]):

Stock.__init__(self, name, symbol, prices)

self.opt_price = opt_price

self.date_available = date

fb_opt = StockOption(’Facebook’, ’FB’, 24.56,

’Mar. 1, 2013’, [19.56, 20.13])

print fb_opt.high_price()



Stock options

The high price() method in the StockOption class is inherited
from the Stock class.

Alternatively, we could override the method.



Override

from stocks2 import *

class StockOption(Stock):

def __init__(self, name, symbol,

opt_price, date, prices=[]):

Stock.__init__(self, name, symbol, prices)

self.opt_price = opt_price

self.date_available = date

def high_price(self):

if len(self.prices) is 0:

return self.opt_price

return max(self.opt_price, max(self.prices))



Python goodies

from stocks2 import *

class Portfolio():

def __init__(self):

google = Stock(’Google’, ’GOOG’)

facebook = Stock(’Facebook’, ’FB’, [19.56])

self.stocks = [google, facebook]

def __contains__(self, key):

for s in self.stocks:

if key in [s.symbol, s.name]: return True

return False

portfolio = Portfolio()

if ’FB’ in portfolio: print ’I own Facebook stock!’



Python goodies

The contains () function is a special class function designed to
work with the in operator.

There are other special class functions. For example, there is one
for iterators (for item in my class).



4

Administrivia

File I/O

Object-oriented Python

Intro to NumPy



NumPy

import numpy as np

list_matrix = [[1, 3, 4], [2, 3, 5], [5, 7, 9]]

A = np.array(list_matrix)

b = np.array([4, 4, 4])

# Solve for Ax = b

x = np.linalg.solve(A, b)



NumPy

Linear classifier:

import numpy as np

def svm_classify(w, b, x):

return np.dot(w, x) - b > 0

w = [-1.3, 4.555, 7]

b = 9.0

points = [[8.11, 3.42, 11.2], [-4.9, 4.557, 7.08]]

labels = [svm_classify(w, b, p) for p in points]



ndarrays

I At the core of the NumPy package, is the ndarray object
which encapsulates n-dimensional arrays of homogeneous
data.

I Many operations performed using ndarray objects execute in
compiled code for performance

I The standard scientific packages use ndarray



ndarray creation

import numpy as np

normal_arr = [[1.2, 2.3], [-3.1, 4.77]]

ndarr = np.array(normal_arr)

ndarr.shape # (2, 2)



ndarray creation

import numpy as np

identity10 = np.eye(10)

ones4x2 = np.ones((4, 2))



Element access

import numpy as np

A = np.ones(4)

A[0, 0] += 2

A12 = A[1, 2]

first_row = A[0,:]

last_col = A[:,-1]



End

Assignment 3 is posted on the course web site (due Tuesday, April
16). Longer than homeworks 1 and 2.

Next time:

1. Dan is lecturing

2. More NumPy

3. SciPy


	Administrivia
	File I/O
	Object-oriented Python
	Intro to NumPy

