
CME 193: Introduction to Scientific Python
Lecture 1: Introduction to Computing with

Python

Austin Benson

Dan Frank

Institute for Computational and Mathematical Engineering
(ICME)

April 3, 2013

1

Administrivia

What is a variable?

Arithmetic and boolean operators

Control Flow

Functions

About the instructors

(a) Austin (b) Dan

ICME PhD students
Offices: ICME (Huang basement)

Course structure

I Five 2-hour lectures, all in first three weeks

I Homework corresponding to each lecture (5 total)

I Lectures:
I 1 hour of instruction

I 1 hour of interactive exercises

I Please bring a laptop to class!

All course materials are on coursework and
http://www.stanford.edu/~arbenson/cme193.html

http://www.stanford.edu/~arbenson/cme193.html

Office hours

I Austin: Monday and Wednesday, 1-2pm, by appointment

I Dan: TBA

I Location: Huang basement near ICME

I Please also use Piazza to ask questions.

Passing the class

The grading scheme is Satisfactory/Not Satisfactory.

To pass, you need to complete all homework assignments and earn
at least 70% of the points on each assignment.

Course textbook

I No textbook!

I We will post online materials on the course web site

Online material

I Short (1-3 minute) videos of topics covered in class.

I Experimental: feedback is greatly appreciated!

Variety

One reason why we are excited to teach this class:

I Students in: Civil Engr., Mech. Engr., Chemical Engr., EE,
ERE, ICME, MSE, Econ, Math, Stats, CS, Business, Biology,
Medical School, Political Science, Aero/Astro, Business, Earth
Systems, Undeclared

I Undergraduate: year 2, 3, 4; Graduate: year 1, 2, 3, 4+

Homework 0

I Homework 0 is posted (it is not due)

I You should be comfortable with the material before starting
Homework 1

Course outline

1. Introduction to Computing with Python

2. Data Structures

3. File I/O, Object-oriented Python, and Introduction to NumPy

4. NumPy and SciPy

5. Data Visualization and Web Scraping

Python 2.x vs Python 3

I Python is currently transitioning from version 2 to 3

I Examples will be in 2.7

I Homeworks have been made compatible with both.

2

Administrivia

What is a variable?

Arithmetic and boolean operators

Control Flow

Functions

Basic variables

A variable holds information (1.343, ’hi’, [1, 1, 2, 3, 5, 8])

In Python this is simple:

x = 1.343 # a number

greeting = ’hi’ # a string

arr = [1, 1, 2, 3, 5, 8] # a list

signifies the start of a comment in Python. The comment
terminates at the end of the line.

Basic variables

Variables can change (they are variable)

x = 1.343

x = 2

x = 10 + 4

x = -3

(no more knowledge of 1.343, 2, or 14)

Types

Unlike C/C++ and Java, variables can change types. Python
keeps track of the type internally.

x = 2

x = [3, 4, 5]

x = ’hi’

If you have PL theory background: Python is strongly typed but
not statically typed

3

Administrivia

What is a variable?

Arithmetic and boolean operators

Control Flow

Functions

Arithmetic operators

2 + 4

3.2 * 6

(8.7 - 3.3) / 4

’hi’ * 10

’hello, ’ + ’world!’

Python supports this arithmetic on strings. (Note: Matlab does
not.)

Arithmetic operators

Shorthand to combine assignment and addition statements:

x = 4

x += 2 # x = x + 2

y = ’hi’

y *= 4 # y = y * 4

x is now 6 and y is now ’hihihihi’

Comparison operators

x == 1 # check for equality

y != ’hello’ # check for inequality

2 > 2 # False

2 >= 2 # True

2.1 < z < 5.4 # chained inequalities

Boolean operations

x = 1

y = ’hello’

x == 1 or y == ’hi’

x > 0 and y != ’hi’

y = 0

x or y

x and y

not y

Python conveniently uses the keywords and, or, not instead of the
symbols &&, ||, !

4

Administrivia

What is a variable?

Arithmetic and boolean operators

Control Flow

Functions

if

The if statement is the most basic way to control the direction
and flow of a program

if x:

print ’hello1’

if not x:

print ’hello2’

if not x and y:

print ’hello3’

if/else

if is often accompanied by else to specify a second path for the
code if the if statement is false

if x:

print ’hello’

else:

print ’hi!’

Evaluating numerical values

As boolean values, the numerical value 0 is False and all other
numerical values are True (1, 4.33, -12, ...).

x = -5

y = 5

z = 0

if x and y and z:

print ’hello1’ # will not print

if (x and y) or z:

print ’hello2’ # will print

while

The while loop repeatedly executes a task while a condition is true

i = 1

s = 0

while i < 10:

s += i

i = i + 1

next lecture

s = sum(range(10))

while

x = 7.0

lower = 0.0

upper = x

guess = (upper + lower) / 2

while (abs(x - guess * guess) > 0.1):

if guess * guess > x:

upper = guess

else:

lower = guess

guess = (upper + lower) / 2

What is this code doing?

for

The for loop also repeatedly executes a task

Typically, for provides more structure:

for (i = 0; i < n; i = i + 1)

for

for (i = 0; i < n; i = i + 1)

Initialize index variable

Condition to continue running the code

Increment at the end of each loop

Python for

I Python uses for differently than Matlab, C++, ...

I for is used to iterate over elements in an “object”

I This is one reason why Python is easy and powerful

I More next lecture on how you can iterate over a “object”

Python for

arr = [1, 2, 3, 4, 5, 6, 7, 8, 9]

for number in arr:

print number * 2

more next lecture...

5

Administrivia

What is a variable?

Arithmetic and boolean operators

Control Flow

Functions

Functions

Functions are used to organize programs into coherent pieces

In other words, functions are used to generalize or “abstract”
components of a program

Root finding

What is a limitation of this code?

x = 7.0

lower = 0.0

upper = x

guess = (upper + lower) / 2

while (abs(x - guess * guess) > 0.1):

if guess * guess > x:

upper = guess

else:

lower = guess

guess = (upper + lower) / 2

Root finding

We do not want a
√

7 method, we want a
√
x method

We still have the same capabilities (just let x = 7), but now our
“abstracted” root finder can be used for more cases

Root finding

With this function, we can call root(7)

def root(x):

lower = 0.0

upper = x

guess = (upper + lower) / 2

while (abs(x - guess * guess) > 0.1):

if guess * guess > x:

upper = guess

else:

lower = guess

guess = (upper + lower) / 2

return guess

Root finding

More general, we can call root(7, 0.1):

def root(x, tol):

lower = 0.0

upper = x

guess = (upper + lower) / 2

while (abs(x - guess * guess) > tol):

if guess * guess > x:

upper = guess

else:

lower = guess

guess = (upper + lower) / 2

return guess

Root finding

Python makes it easy to provide default argument values:

def root(x, tol=0.1):

lower = 0.0

upper = x

guess = (upper + lower) / 2

while (abs(x - guess * guess) > tol):

if guess * guess > x:

upper = guess

else:

lower = guess

guess = (upper + lower) / 2

return guess

Can call root(3), root(113, 0.01)

Root finding

A few things to think about:

I Are there cases where root() will have an error?

I Are there cases where root() will run forever? (fail to
converge)

I How else can we generalize the function?

Basic functions

What will happen when this code runs?

x = 5

def printer(y):

print x + y

printer(5)

Basic functions

What about this code?

x = 5

def printer(x, y):

print x + y

printer(4, 5)

More function examples

def polyval(p, x):

val = 0

i = 0

for coeff in p:

val += coeff * (x ** i) # ** is ^

i = i + 1

return val

print polyval([1, 2, 0, 1], 4) # prints ’73’

More function examples

def polyval(p, x):

val = 0

for i, coeff in enumerate(p):

val += coeff * (x ** i)

return val

print polyval([1, 2, 0, 1], 4) # prints ’73’

Indentation / white space

Python uses indentation (“white space”) to group statements

Each code block is indented the same amount (for loop, while
loop, function definition, etc.)

Python will complain if your indentation is incorrect

Indentation

a = 10

b = 2

while a > 1:

print a + b

a = a - 1 # wrong indentation --> error!

2-space or 4-space indentation is standard.

Identation

def func_incorrect1(x, y, z):

if x < y: # wrong indentation --> error!

return z

return 0

def func_incorrect2(x, y, z):

if x < y:

return z # wrong indentation --> error!

return 0

def func_correct(x, y, z):

if x < y:

return z

return 0

White space

Some people like this indentation structure and some people do
not.

... Python isn’t going to stop using it

End

I Assignment 1 is posted on the course web site (due Tuesday
4/9)

I In-class exercises, python codes from slides, and readings also
posted

Next time:

1. More on Python functions

2. Strings

3. Lists

4. Dictionaries

5. Tuples

	Administrivia
	What is a variable?
	Arithmetic and boolean operators
	Control Flow
	Functions

