
PHYS488: Modelling Physical Phenomena (Lecture 3) 1

PHYS 488

Modelling Physical Phenomena

Lecture 3

PHYS488: Modelling Physical Phenomena (Lecture 3) 2

Phys488: What we learned in week 2: if statement and for

loop

if (some test)

{

java code executed if the test is TRUE

}

else

{

java code executed if the test is FALSE

}

The if statement is useful to make choices within a program depending on
some condition.

for (int bins =0; bins <= SIZE-1; bins++) //

{

screen.println("Bin " + bins + " contents = " + hist1[bins]);

}

The for loop allows you to repeat a command a given number of times

The second ‘else’ block
is optional.

Initialising the counter condition to continue Increments the counter

PHYS488: Modelling Physical Phenomena (Lecture 3) 3

Phys488: What we learned in week 2: arrays and the cast

statement

Arrays are useful for dealing with series of values, for example the bins of a

histogram.

final int SIZE = 20;

int [] hist1 = new int[SIZE];

A cast statement is sometimes needed to change from one type of

variable to another.

bin = (int)((nextone-binlow)/binsize));

changes the floating

point result to an

integer.

PHYS488: Modelling Physical Phenomena (Lecture 3) 4

Phys488: A few rules on good programming practice

class SomeClass

{

int output = 0;

int SomeMethod (int Input)

{

if (some test)

{

output = 1;

}

return output;

}

}

It is a considerable help to indent each new block in a Java class and pair up the { }
in vertical lines. This helps to find misplaced, missing or extra brackets, a common,
and hard-to-spot, fault.

In general it’s not a good idea to built specific numbers into your code (“hard-

coding”), instead always use variables to store them.

So avoid things like:

Better to use:

if (nextone>0.4 && nextone<0.9)

double binlow=0.4;

double binhigh=0.9;

..

if(nextone>binlow && nextone<binhigh)

PHYS488: Modelling Physical Phenomena (Lecture 3) 5

Phys488: What we learned in week 2: methods

The structure of a java class consists of a number of independent
methods that perform specific tasks.

Data can be passed to a method via a parameter list, and the method can
return a single value via its return statement. The parameters MUST be
given in the correct order. (methods that don’t return a value are declared
with the return type void.)

....

private static double getsum(double x, double y)

{

double sum;

sum = x + y;

return sum;

}

....

type

Arguments

or

Parameter list

return value

PHYS488: Modelling Physical Phenomena (Lecture 3) 6

Phys488: The scope of variables (local scope)

The variables defined within a method are not accessible to the rest of the
program (they have local scope).

In the parameter list of a method only the values are passed, hence a
variable cannot be overwritten by the method.

This ensures input parameters (e.g. the variables “first” and “second”)
cannot be modified either by accident or by design from inside the
method. This is an important safety feature that helps to prevent mistakes.

(By default any variable declared with a set of curly brackets has (local)
scope, only within those brackets)

private static double getsum(double x, double y)

{

double sum;

sum = x + y;

return sum;

}

....

public static void main (String [] args) throws IOException

{

double first = 1.5;

double second = 2.5;

double ans = getsum(first, second);

screen.println(" The sum of these two numbers = " + ans);

}

“x”, “y” and “sum” are only

accessible to method getsum

“first”, “second” and “ans” are

only accessible to method main

PHYS488: Modelling Physical Phenomena (Lecture 3) 7

Phys488: The scope of variables (class scope)

Variables can be given class scope by defining them at the

start of the class using the keyword static, before the first

method. Such variables can be accessed and/or modified

by any part of the class.

Hence such variables can be used within methods without

having to pass them in the parameter list.

....

class GenerateHistogram

{

static PrintWriter screen = new PrintWriter(System.out, true);

static final double c=3E8;

public static void main (String [] args)

{

screen.println("The value of c is " + c);

.....

PHYS488: Modelling Physical Phenomena (Lecture 3) 8

Classes (focus of exercises in the following weeks)

The more radical step to making code more modular (and which

defines Object Oriented Programming) is the use of additional

Classes. (Remember the program itself is a Class already).

A Class can contain multiple methods and variable declarations.

Hence a Class can be used (for example from your main method) to:

- Provide a set of tools

- access multiple variables

How and when to use Classes?

- To provide tools you would re-use in different programs

- To cluster variables and tools that naturally fit together

This needs some examples!

Example: A particle class

A good example of a bundle of variables and tools that naturally fit together are

the properties of a particle and the various kinematic calculations associated

with these.

Variables

A particle has a momentum in x,y, and z, energy, mass, charge, ...

Tools

- calculate the mass based on the energy and momentum

- Lorentz-boost the momentum to another frame

- combine the momenta of 2 particles in a single one (for example) to identify a

particle based on observing its decay products

A particle class would allow you to do things like:

Particle Electron1 = new Particle(momentum, type, etc..)

Particle Electron2 = new Particle(momentum, type, etc..)

Particle Electron3 = Electron1 + Electron3

Particle Electron3Boosted = Electron3.BoostParticle(Px,Py,Pz)

screen.println("The boosted momentum in x is " + Electron3Boosted.Px());

.........

PHYS488: Modelling Physical Phenomena (Lecture 3) 9

PHYS488: Modelling Physical Phenomena (Lecture 3) 10

Example of using a class
Different ways to write the HelloWorld program.

Simplest possible

import java.io.*;

class HelloWorld1

{

public static void main(String[] args)

{

System.out.println(" Hello World!");

}

}

import java.io.*;

class HelloWorld

{

PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String[] args)

{

screen.println(" Hello World!");

}

}

The preferred way in Object-Oriented style (this is what we used in week 1).

We define an instance “screen” of the class “PrintWriter” allowing us to access

various useful tools from this class. The second way is more flexible. For example it

would be relatively easy to change the code to write to a file instead of to the

screen.… PTO

PHYS488: Modelling Physical Phenomena (Lecture 3) 11

Two ways to write the HelloWorld program. (cont.)

import java.io.*;

class HelloWorldtoFile

{

public static void main(String[] args)

{

PrintWriter myPreferedOutput = new

PrintWriter(System.out,true);

myPreferedOutput.println(" Hello World!");

}

}
import java.io.*;

class HelloWorldtoFile

{

public static void main(String[] args) throws FileNotFoundException

{

PrintWriter myPreferedOutput = new PrintWriter("MyFile.txt");

myPreferedOutput.println(" Hello World!");

myPreferedOutput.close();

}

}

Writes to screen

Writes to file

Even for very long programs (with many “println” statements) we only have to

change a few lines!

PHYS488: Modelling Physical Phenomena (Lecture 3) 12

Phys488: Instantiation & instance methods
This week we will get to the heart of OO programming, which is to understand
the concepts of an object, instantiating an object and using instance methods
within that object.

Access to an object is via a reference variable which points to where the object
is stored in the computer’s memory.

In fact we’ve encountered some instance variables already:

“screen” is a reference variable pointing to an object in memory which is an
instance of the class PrintWriter

....

class GenerateHistogram

{

static final double c=3E8;

public static void main (String [] args) throws

FileNotFoundException

{

PrintWriter screen = new PrintWriter(System.out, true);

PrintWriter myfile = new PrintWriter("MyFile.txt");

screen.println("The value of c is " + c);

myfile.println("The value of c is " + c);

.....

Names of the instances (can be more than 1!)

println is an instance method of class PrintWriter

Type of class to be instantiated

Constructor method

PHYS488: Modelling Physical Phenomena (Lecture 3) 13

The way we have made a histogram is not elegant and there is a much better way
of doing it. We will take a first look at the central idea of Object Orientated (OO)
programming and construct a separate class, Histogram which we will invoke from
another class (our program) MakeHistograms. The new class stores our
histogram. There are thus TWO classes, with an overall structure as follows:

Work for Week 3: class Histogram

class MakeHistograms

{

static methods ()

{ ... }

public static void main()

{

Histogram myhisto1 = new Histogram (optional parameter list);

.....

}

}

class Histogram

{

// constructor method

public Histogram (optional parameter list)

{.... }

public String method1 (optional paremeters)

{ }

public int method2 (parameters)

{ }

}

p.t.o.

PHYS488: Modelling Physical Phenomena (Lecture 3) 14

1) This method of making a program is called Encapsulation as we are making an
abstract data type called Histogram.

2) Notice only one of the classes (MakeHistograms) contains a main method. This is
the method which runs when the program starts. In the main method, one creates
instances (often called object) of a Class with the command:

Classname myinstancename = new Classname(optional
parameters)

This line causes the constructor instance method to run and create a copy of the
object in memory, with its initial values set up.

3) Once an instance is made its methods can be accessed using
myinstancename.methodname()

e.g. we add data into the histogram with the command
hist1.fillh(nextone);

here

(a) hist1 is the reference variable pointing to object Histogram

(b) fillh is the instance method in class Histogram.

(c) nextone is the next random number.

Work for Week 3: class Histogram

PHYS488: Modelling Physical Phenomena (Lecture 3) 15

Type in and set up the classes MakeHistograms and Histogram, adding instance
methods to class Histogram that let the user get the underflows and the overflows
of the histogram as well as the statistical error in a given bin.

Explain in your report what the constructor method does in general and in the case of
the Histogram class.

[1.5]

Add the method writeToDisk from last weeks exercises as a further instance method
to this class. Revise the parameter removing parameters that are no longer needed.
Load the output from writeToDisk in Excel and plot the already defined histogram
with random numbers between 0.4 and 0.9. Make sure the x-axis of your histograms
correctly show the bin-centre in x and not the bin number.

[1.5]

Add the method gauss to class MakeHistograms, then create a second instance of
Histogram in the main method of MakeHistograms, to make a histogram of 2000
numbers following a Gaussian distribution which has 0 as it central value and a width
of 0.5. Make a Histogram in Excel. Use 20 bins over a range from -1.0 to 1.0 .

Explain in your report why the code in the method gauss gives you a (nearly)
Gaussian distribution (look up “central limit theorem”) .

[1.5]
Use your code make a third histogram of the numbers D produced when you take a
random number in the range 0 < r <1 and define D = – C*ln(r) (note the –ve sign).
Take C =15 and work out an appropriate range and binning for this histogram. Make
a Histogram in Excel.

[1.5]

Work for Week 3: class Histogram

PHYS488: Modelling Physical Phenomena (Lecture 3) 16

Work for Week 3: class MakeHistograms
import java.io.*;

import java.util.Random; // notice this..needed to load the class Random.

class MakeHistograms

{

static BufferedReader keyboard = new BufferedReader (new InputStreamReader(System.in))

;

static PrintWriter screen = new PrintWriter(System.out, true);

static Random value = new Random(); //This line must only be used once in any program!

public static void main (String [] args) throws IOException

{

// It helps in debugging to force the same random numbers to be used each time.

//long seed = 38945628; // choose some large integer to be the seed

//value.setSeed(seed); // use the method "setSeed" in Class Random

int trials;

screen.print("Input the number of random numbers to generate "); screen.flush();

trials = new Integer(keyboard.readLine()).intValue();

// create an instance of the Class Histogram

Histogram hist1 = new Histogram("Random numbers",20, 0.4, 0.9);

p.t.o.

PHYS488: Modelling Physical Phenomena (Lecture 3) 17

Work for Week 3: class MakeHistograms (cont.)

for (int goes=1; goes <= trials; goes++)

{

double nextone = value.nextDouble();

hist1.fillh(nextone); /* put this into the histogram using the instance

method fillh in the Object with reference variable hist1 */

}

//histogram has been filled. Show the contents on the screen.

//Also, add up the contents of the bins to see if the sum equals trials

screen.println("Title of histogram = " + hist1.getTitle());

double sum = 0;

// find how many bins using the instance method "getSize()"

int numberbins= hist1.getSize();

for (int bins =0; bins <= numberbins-1; bins++) //

{

screen.println(hist1.getContent(bins) + "\t");

sum = sum + hist1.getContent(bins);

}

//hist1.writeToDisk(c:\\mydata.csv"); // method doesn’t exist yet

screen.println(" the number of trials = " + trials + " ,

the sum of the contents =" + sum);

}

}

PHYS488: Modelling Physical Phenomena (Lecture 3) 18

import java.io.*;

class Histogram

{

// these variables have class scope. see Hubbardpage 197 for use of 'protected'

protected double binsize, binlow, binhigh,

protected String title;

protected int SIZE, underflow, overflow;

int[] hist; // define an integer array to store the histogram

// constructor method for the class Histogram

public Histogram(String t, int S , double binlo, double binhi)

{

// store the parameters in local variables to be used later

title = t;

SIZE=S;

binlow = binlo;

binhigh = binhi;

// calculate any variables that might be useful later.

binsize = (binhigh - binlow)/ (double) SIZE;

hist =new int[SIZE];

underflow=0;

overflow=0;

}

//-------------------------------------

// instance methods start here

//-------------------------------------

public int getSize() { return SIZE;}

//--

p.t.o.

Work for Week 3: class Histogram

PHYS488: Modelling Physical Phenomena (Lecture 3) 19

Work for Week 3:class Histogram (cont.)

public void fillh(double x)

{

if(x > binlow && x < binhigh)

{

// update the correct bin

int bin = (int) ((x - binlow)/binsize);

hist[bin]++; // add 1 to the bin

}

else

{

if (x <= binlow) underflow++;

if (x >= binhigh) overflow++;

}

}

//-------------------------------------

public String getTitle()

{

// returns the title of the histogram to the user

return title;

}

//-------------------------------------

public int getContent(int nbin)

{

// returns the contents on bin 'nbin' to the user

return hist[nbin];

}

}

PHYS488: Modelling Physical Phenomena (Lecture 3) 20

Work for Week 3: gauss method

private static double gauss(double xmean, double sigma)

{

double newGauss, sum;

sum=0;

for (int n=0 ; n<=11; n++)

{

sum=sum + value.nextDouble();

} // add up 12 random numbers

newGauss = xmean + sigma*(sum -6);

return newGauss;

}

