
PHYS488: Modelling Physical Phenomena (Lecture 2) 1

PHYS 488

Modelling Physical Phenomena

Lecture 2

PHYS488: Modelling Physical Phenomena (Lecture 2) 2

Phys488: What we learned in week 1

General structure Java program

import java.io.*;

class HelloWorld

{

static PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String[] args)

{

// this part of the program is called the main method

screen.println(" Hello World!");

}

}

Import any external package you

might need.
Definition of the class.

(Here the program itself

is the class)

Definition of the main

method. Every

program need a

“main” method

{ .. } curly brackets to mark the code belonging to a class

or the main method

; semi-colon at the end of every line of code

“…” quotation marks to define a text string

// to write comments in the code

Use of indentation to clarify where brackets start and end.

In last weeks exercises we practiced: initialising variables, writing to the
screen, reading from the keyboard and using some methods from the Math
class.

PHYS488: Modelling Physical Phenomena (Lecture 2) 3

Phys488: What we learned in week 1 (cont.)

We encountered primitive data types

int 32 bit integers between -2,147,483,648 (-231) and 2,147,483,647 (231-1)

long 64 bit integers between -9,223,372,036,845,775,808 (-263) and

9,223,372,036,845,775,807 (263-1)

float 32 bit real number …. (~ 7 digit precision)

double 64 bit real number …. (~16 digits precision)

char Unicode characters (16 bits)

boolean true or false (1 bit)

Note, the String class we encountered last week is NOT a primitive data type.

PHYS488: Modelling Physical Phenomena (Lecture 2) 4

Phys488: What we learned in week 1 (cont.)

First encounter with Fields

These are Field declarations:

int a;

double momentum = 1000.;

Where “final” signifies that the value of this field must be set and cannot be

changes (appropriate for a physical constant).

Example of a more complicated Field declaration:

final double c = 3E8;

static PrintWriter screen = new PrintWriter(System.out,true);

Sometimes a “modifier” comes before the field declaration.

For example:

PHYS488: Modelling Physical Phenomena (Lecture 2) 5

Phys488: What we learned in week 1 (cont.)

First encounter with Classes and Methods
We have written 5 different classes (program class with a main() method):

• InputDataExample, PrimitiveDataTypes, MathExamples,
RelativisticDynamics and FourVectors

But we’ve also used several standard Java classes and some of their methods:

• PrintWriter: println()

• BufferedReader: readLine()

• Double: doubleValue()

• Integer: parseInt()

• Math: sqrt(), Pi, atan2()

• String

These are all standard Java classes and methods.

Today we’ll write some of our own methods. We’ll come to write our own classes
as well.

Classes (and their methods) are at the heart of Object-Oriented programming.

A very flexible way to have generic bits of software that can be used by multiple
programs. These can be:

• tools that are useful in various programs

• Complex data types created for some dedicated purpose (think of Particle
example Lecture 1)

Methods (focus this weeks exercises)

The first step in making programs more modular is through the use of

methods.

For any operation/calculation/manipulation that is done more than

once, writing a method makes sense.

The operation is defined only once in the program. This is done

outside the main and can be called from the main many times.

The method becomes a tool that can be used many times.

This avoids writing the same code more often than necessary, thus

keeping your program as short as possible.

The more radical step to making code more modular (and which

defines Object Oriented Programming) is the use of additional

Classes. We discuss this next week.

PHYS488: Modelling Physical Phenomena (Lecture 2) 6

....

private static double getsum(double x, double y)

{

double sum;

sum = x + y;

return sum;

}

modifiers

type
name

arguments

return value

PHYS488: Modelling Physical Phenomena (Lecture 2) 7

The structure of Methods
An simple example you will see this week:

In addition to the “main” method a program can have many other
methods, which could for example be invoked from the main method. We
will see several examples this week:

We have already encountered the “main” method:

....

public static void main(String[] args)

{

double a=1.2;

double b=2.3;

screen.println("The sum is: " + getsum(a,b));

}

The “main” method has

data type “void”, since

no value is returned by

this method

Arrays

An array is a series of objects of the same type. For example:

PHYS488: Modelling Physical Phenomena (Lecture 2) 8

double a =1.23;

double [] b = new double[5];

b[0] = 1.23;

b[1] = 2.34;

b[2] = 3.45;

b[3] = 4.56;

b[4] = 5.67;

screen.println(" the first value is:, b[0]);

Note that in java the position in the array start at position 0.

double [] b = {1.23, 2.34, 3.45, 4.56, 5.67};

The following also works:

Loops

Useful for things that need to be done more than once.

PHYS488: Modelling Physical Phenomena (Lecture 2) 9

for (int n = 0 ; n < 10 ; n++)

{

screen.println(" n = " + n + " then n^n = " + Math.pow(n,n));

}

int sum = 0;

while (sum < 100)

{

screen.println(" Type in a number: ");

int number= new Integer(keyboard.readLine()).intValue();

sum += number;

screen.println(" The sum stands at: " + sum);

}

“for”-loops: for instructions that need to be executed a fixed number of

times

“while”-loops: when it is not known (in advance) how often instructions

need to be executed

“if” (“else”) statements

If the execution of a set of statements depends on a condition

PHYS488: Modelling Physical Phenomena (Lecture 2) 10

screen.println(" Type in a number: ");

int number= new Integer(keyboard.readLine()).intValue();

if (number >= 0)

{

screen.println(" The number you typed is positive.");

}

else

{

screen.println(" The number you typed is negative.");

}

The “else { ...}“ part is optional.

PHYS488: Modelling Physical Phenomena (Lecture 2) 11

Phys488: Week 2 Examples and work.

Class SimpleSum. This shows how to divide your program into independent
blocks of code called Class Methods. This is a very important way to write
programs.

Class FindRoots. This is a similar program to example (1) but with a more
interesting Class Method, called nthRoot.

Class SimpleLoops. Give two examples of constructing a loop. The first way,
using the ‘for’ statement, is useful when you know how many times the loop has to
be executed. The second example, using the ‘while’ statement, is useful when you
don’t know how many times the loop is to be executed.

Class SimpleArray. Introduces the concept of storing numbers in consecutive
locations in memory with one generic name. This is a very important idea.

Class Interpolate. This combines techniques seen in examples 3 and 4 to
interpolate on a set of data. This means to make an estimate of a number when
you only have some nearby values available.

Class GenerateHistogram. This example shows how to generate a large number
of random numbers, r, in the range 0 < r < 1, and make a histogram (frequency
distribution) of them.

Class method writeToDisk Class method to save the histogram data in a file on
disk to import into Excel to make presentation quality graphs and charts.

(The last three examples are in VITAL so you don’t have to type these in
completely.)

PHYS488: Modelling Physical Phenomena (Lecture 2) 12

Example: class SimpleSum

import java.io.*;

class SimpleSum

{

// define the identifiers with class scope.

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

//--------Class methods start here-------------------------------

private static double getsum(double x, double y)

{

double sum;

sum = x + y;

return sum;

}

//------------ End of class methods --------------------------

// Example of program with a main method and Class method, simpleSum

public static void main (String [] args) throws IOException

{

screen.println("Please type in the first number ");

double first = new Double(keyboard.readLine()).doubleValue();

screen.println("Please type in the second number ");

double second = new Double(keyboard.readLine()).doubleValue();

double ans = getsum(first, second);

screen.println(" The sum of these two numbers = " + ans);

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 13

Example: class FindRoots

import java.io.*;

class FindRoots

{

// define the identifiers with class scope.

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

//--------Class methods start here-------------------------------

private static double nthRoot(double x, double n)

{

// This class method finds the nth root of any real number

double logofanswer;

// warning: this method is unprotected against x <= 0

logofanswer = Math.log(x)/n;

return Math.exp(logofanswer);

}

//------------ End of class methods --------------------------

public static void main (String [] args) throws IOException

{

screen.println(" The cube root of 27 = " + nthRoot(27,3));

screen.println(" The cube root of 9*9*9 = " + nthRoot(9*9*9,3));

screen.println(" The 1.5 root of 9*9*9 = " + nthRoot(9*9*9,1.5));

// notice from the output, computers work to a finite accuracy with real numbers

// QUESTION. Does the following line produce the right answer?If not, why not?

screen.println(" The 3/2 root of 9*9*9 = " + nthRoot(9*9*9,3/2));

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 14

Example: class SimpleLoops

import java.io.*;

class SimpleLoops

{

static PrintWriter screen = new PrintWriter(System.out, true);

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

public static void main (String [] args) throws IOException

{

// example 1 , "for" loop.

int maxn = 10;

for(int n = 0; n <= maxn; n++) // n++ means add 1 to current value of n

{

screen.println(" When n = " + n + " then n^n = " + Math.pow(n,n));

}

// example 2 , "while" loop

// guessing game.. try to guess the number I'm thinking of

int guess= 17;

screen.println(" Hello.. try to guess the integer < 20 I'm thinking about");

screen. println(" Type in your first guess");

int yourGuess = new Integer(keyboard.readLine()).intValue();

while (yourGuess != guess) // != means NOT EQUAL

{

screen.println(" No, your guess = " + yourGuess + " is not correct, try again");

yourGuess = new Integer(keyboard.readLine()).intValue();

}

screen.println("Correct! , at last you did it");

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 15

Example: class SimpleArray

import java.io.*;

class SimpleArray

{

// define the identifiers with class scope.

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args) throws IOException

{ // Program to store integer numbers in an array

screen.println(" How many numbers do you want to store?");

int numberToStore = new Integer(keyboard.readLine()).intValue();

int [] myStore = new int [numberToStore];

// create an array called 'myStore' in memory with this number of elements

// warning..arrays start at ZERO, not 1.

int m;

for(int n = 0; n < numberToStore; n++)

{

screen.println("Please type in the " + (n+1) + " number ");

m = new Integer(keyboard.readLine()).intValue();

myStore[n] = m;

}

screen.println("\n\n All finished..please check this list");

for(int n = 0; n < numberToStore; n++)

{

screen.println(n + " location, value stored = " + myStore[n]);

}

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 16

Example: class Interpolate
import java.io.*;

class Interpolate

{

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args) throws IOException

{

/* cross-section in mb for hypothetical process in 12 equal energy steps of 10 MeV

starting from 10 MeV hence: lowest energy= 10 MeV. Compute highest energy */

// this is how to put the data directly into an array.

double [] sigmaOfProcess= { 20, 40, 80, 160, 130, 120 ,110,105,100,100,100,100};

// this is element number 0 1 2 3 4 5 6 7 8 9 10 11

// energy 10 20 30 40 50 60 70 80 90 100 110 120 MeV

int ndata = 12;

int binBelow;

double deltaE = 10; // interval in MeV between each entry in the array 'sigmaOfpProcess'.

double minE = 10; // lowest energy for which measurements exists.

double maxE; // Highest energy for which data exists.

double inputEnergy; // Trial energy typed in by the user (MeV).

double gradient; // local gradient d(sigma)/dE at energy 'inputEnergy'.

double cross_section ; // output cross-section computed from table using linear interpolation.

// as the maximum energy of the array of data is not given, calculate it in case it is needed.

maxE = minE + (ndata-1)*deltaE;

// ask user to type an energy, stop calculating cross-sections when this is zero

screen.println(" Type in an energy in MeV, zero to finish ");

inputEnergy = new Double(keyboard.readLine()).doubleValue();

// Now follows an example of using the 'while' statement to put Numeric Sentinel on code

PHYS488: Modelling Physical Phenomena (Lecture 2) 17

Example: class Interpolate (cont.)

while (inputEnergy != 0) // != means not equal to

// will only get to here if inputEnergy is > 0

// identify the array element just below the energy the user has typed in.

// this assumes the energy interval between each bin is constant = deltaE.

{

// first time through, use numbers just typed in.

// warning . This is not protected against illegal values of inputEnergy.

binBelow = (int) ((inputEnergy - minE)/deltaE) ;

screen.println(" this is just above bin " + binBelow);

// now use linear interpolation to estimate the cross section for this energy

gradient = (sigmaOfProcess[binBelow+1] - sigmaOfProcess[binBelow])/ deltaE;

// NOTE: above line needs square brackets, [binBelow], to refer to array elements.

cross_section = sigmaOfProcess[binBelow] + gradient * (inputEnergy-(binBelow*deltaE + minE));

screen.println(" The cross-section at " + inputEnergy + " = " + cross_section + " barns");

//note : it is VITAL to read the keyboard again INSIDE this 'while' loop

screen.println(" Type in an energy in MeV, zero to finish ");

inputEnergy = new Double(keyboard.readLine()).doubleValue();

}

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 18

Example: class GenerateHistogram
import java.io.*;

import java.util.Random; // notice this..needed to load the class Random.

class GenerateHistogram

{

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args) throws IOException

{

final int SIZE = 20; // note : the array elements are numbered 0, 1 , 2 ,3 ,.... SIZE-1

int [] hist1 = new int[SIZE]; // The array is filled with zeros, see page 162 Hubbard

double binlow = 0; // this is the low edge of the first bin , hist1[0].

double binhigh = 1; // this is the upper edge of the last bin, hist1[SIZE-1].

double binsize; // this is the width of each bin. It is calculated

double sum;

Random value = new Random(); /* value is a reference variable (page 30 Hubbard) which points

to the random number class Random. This command

'brings to life‘ or INSTANTIATES one copy of the class Random

and puts it into memory.

"value" refers to an INSTANCE of the class Random*/

int trials;

int bin;

String anykey;

double nextone;// primative variable to store each random number as it is generated.

/* we will generate a large number of random numbers between 0 and 1 and make a histogram.

The random numbers should be uniformly distributed, so that all the bins will contain

the same number of counts. However, there will be statistical fluctuations in the contents

of the bins */

binsize = (binhigh - binlow)/((double)SIZE); // note the cast (double)

screen.println(" The width of each bin = " + binsize);

screen.println("Input the number of random numbers to generate ");

PHYS488: Modelling Physical Phenomena (Lecture 2) 19

Example: class GenerateHistogram (cont.)

trials = new Integer(keyboard.readLine()).intValue();

if (trials > 1000000) trials =1000000;// trap stupid values that will take ages

screen.println("\n\n\n Working.. please wait");

for (int n=1; n <= trials; n++)

{

nextone = value.nextDouble();

// the public method nextDouble() is found in the instantiation

// of the class Random to which the reference variable 'value' points

if(n < 4) screen.println(" The " + n + " number is = " + nextone);

// calculate which bin of the array should be increased by 1

bin =(int) ((nextone - binlow)/binsize);

hist1[bin]++; // add 1 to the location in the array hist1

}

//histogram has been filled. Show the contents on the screen.

//Also, add up the contents of the bins to see if the sum equals trials

sum = 0;

for (int bins =0; bins <= SIZE-1; bins++) //

{

screen.println("Bin number " + bins + " contents = " + hist1[bins] + "\t");

sum = sum + hist1[bins];

}

screen.println(" the number of trials =" + trials + " , the sum of the contents =" + sum);

}

}

PHYS488: Modelling Physical Phenomena (Lecture 2) 20

// Example of a class method to save the histogram data in a file on disk to import into Excel to make

presentation quality graphs and charts.

static BufferedReader keyboard = new BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

private static void writeToDisk(int nbins, int [] h , double low, double dx) throws IOException

{

// This method handles the writing to disk

String filename ="C:\\hist1.csv";

FileWriter file1 = new FileWriter(filename);// this creates the file on the A: drive

PrintWriter outputFile = new PrintWriter(file1);// this sends the output to file1

// we chose to write the file as a comma seperated file (.csv) so you can read it into EXCEL

screen.println("Writing to disk, please wait....");

outputFile.println("Binlow , " + low); // note the comma in the text here

outputFile.println("Binint , " + dx); // ditto the previous comment

outputFile.println("nbins , " + nbins); // ditto the previous comment

// now make a loop to write the contents of each bin to disk, one number at a time

// together with the x-coordinate of the centre of each bin.

for (int n = 0; n <= nbins-1; n++)

{

// calculate the x coordinate of the centre of each bin

double binCentre = low + dx/2 + n*dx;

outputFile.println(n + "," + binCentre + "," + h[n]);

// note in the above line we specifically write the comma into the file

}

outputFile.close(); // close the output file. THIS IS AN IMPORTANT LINE

screen.println(" Data written to disk in file " + filename);

return;

}

Example: class method writeToDisk

PHYS488: Modelling Physical Phenomena (Lecture 2) 21

Work for Week 2.
Look through the above examples, copy the code into BlueJ and run the programs. Make
sure you understand the points about Java and general computing techniques that
are being made. If you don’t understand, ask!

Do you understand why the programm FindRoots give an unexpected result on the last line
of output?

Take your first week’s four-vector program and modify it to use a for loop to read in the
input values as well as an array to store the vectors. Also add three separate Class
Methods to this class:

1.a class method that returns the momentum of a given four-vector,

2.a class method that returns the invariant mass of a given four-vector,

3.a class method to add together 2 four-vectors.

Make sure you use these methods from the main.

[1.5]

Modify the GenerateHistogram class to histogram numbers in the range 0.4 < r <0.9,

(i.e.change binlow and binhigh) and add code to count the number of random numbers that
fall below (the underflows) or above (the overflows) the range of the histogram. Also print
out the statistical error on the contents in each bin, both as a number of counts and as a
percentage of the total in each bin.

[1.5]

PTO

PHYS488: Modelling Physical Phenomena (Lecture 2) 22

Work for Week 2 (continued)

The class method WriteToDisk takes the histogram and writes some of the data to disk so
that it can be imported more easily into EXCEL to make nice graphs/charts etc. The class
method is accessed by a single line:

writeToDisk(SIZE, hist1, binlow, binsize);

to be added to the program at the very end of the main method. Notice how the array hist1
is passed to the class method as a parameter in the argument list. Using an array like this
is a convenient way of passing many parameters either way, to or from(!) a class method.
The ‘return’ command can only return one value.

Work to do with writeToDisk method:

Add the writeToDisk method to the GenerateHistogram class. Modify it to also save, in
the file, the statistical errors and the number of trials, underflows and overflows. Also
modify it to ask the user to type in the filename rather than build it into the code as is
done at present.

[1.5]

Import the output file from writeToDisk in to Excel and make a graph of the histogram
you produced, using the bin centre as the x value, the contents of each bin as the y value
and the statistical error as the error bar on the y value.

[1.5]

Submit the report for the exercises for weeks 1 & 2 to VITAL before the lecture in
week 3!

PHYS488: Modelling Physical Phenomena (Lecture 2) 23

Stuff to read for next week

Chapters that discuss what is covered in week 3 lecture and exercises:

6.1..6.4 (not a particularly good introduction however, so …)

PHYS488: Modelling Physical Phenomena (Lecture 2) 24

Some further information:

“Modifiers” are placed before field, class or method declarations.
(see also section 6.4 in Hubbard)

private/public: determines whether fields or methods can be accessed
from outside or only from inside the class in which they are declared.

Example:

• the “main” method must always be “public”

• other methods we declare in our programs will often be “private”.

final: the initial value given to this variable cannot be changed (use this
when you define a constant)

static: the value can be accessed throughout the class. I.e. every
method in the class has access to this variable. (there is a bit more to
the meaning of static, to which we’ll get later on..)

