
PHYS488: Modelling Physical Phenomena (Lecture 1) 1

PHYS 488

Modelling Physical Phenomena

Joost Vossebeld

Lectures developed by Mike Houlden

Lecture 1

PHYS488: Modelling Physical Phenomena (Lecture 1) 2

PHYS488: The main objectives

Introduction to the use of an Object Oriented (OO)

programming language (Java).

To learn how to set up a realistic model of a given

physical problem.

To gain experience in testing/verification of a model.

Working in a group, reporting and presentation of the

work.

PHYS488: Modelling Physical Phenomena (Lecture 1) 3

PHYS488: Schedule & Assessment
Weeks 1-5: lectures and 5 weekly exercises, with bunched hand-in for weeks:
(1+2), (3+4) & 5. Initial training in Java and general computer techniques

• lecture on Tuesday (10am, BROD-106)

• practical sessions on Tuesday mornings (10am-1pm, CTL6-PCTC-Orange),
Tuesday afternoons (2pm-5pm, CTL6-PCTC-Orange) and Wednesday
mornings (10am-1pm, CTL6-PCTC-Orange). Room allocations can change,
so keep an eye on ORBIT and my emails

Weeks 6-10:Significant programming project within your project group that will form
the basis of your project report and presentation.

• Week 6: short lecture on Tuesday 10am in room BROD-106 to start of the
projects.

• Weeks 6-10: work on projects during practical sessions on Tuesdays and
Wednesday mornings and in your own time.

Week 11: presentations and handing-in of reports

Assessment: The proportion of marks awarded for each part is as follows;

• 5 sets of weekly exercises

(week 1+2 12%, week 3+4 12%, week 5 6%) 30%

• Group project report 20%*

• Individual project report (2x15%) 30%*

• Oral presentation 20%

* Group and individual reports will be double-marked, as with other project reports.

PHYS488: Modelling Physical Phenomena (Lecture 1) 4

PHYS488: Some technical points.

Attendance:

Students are expected to attend all lectures and practical sessions

Only exception is the practical sessions during weeks 1-5, where attendance is
only required until the work on that weeks exercise has been finished and the
report is handed-in (in weeks where a hand-in is due!). In the weeks 6-10, during
the project work, all practical sessions should be attended.

Demonstrators will be available to help during the practical sessions. Working “at
home” for extended periods without discussing your work and progress with the
module teachers is not tolerated.

Please scan your student ID for our attendance record for both lectures and
practical sessions.

Book:

For the duration of the semester you can borrow the book on programming in Java.
John R Hubbard’s book “Programming with Java” Second Edition. This covers
most of the Java we will meet in this module. You should bring the book with you to
the lab sessions.

PHYS488: Modelling Physical Phenomena (Lecture 1) 5

PHYS488: Some technical points (cont.)
Exercises weeks 1 to 5:

Reports should be written in a comprehensible manner. Assume the same standard
applies as for the year 1, 2 and 3 lab reports. The reports should always include

• An introduction

• A clear description of the work done, including
• Java aspects used,

• Physics aspects of the programmes

• Mathematical aspects of the programmes

• Print-outs, input and output of the code you’ve written (make sure these are
readable!) ,tables , graphs with appropriate axis labels, error bars etc.,

• Any other requested information

• Description and results of Desk Checks, i.e. evidence that you checked your
code.

• Descriptions of any Problems or Errors you encountered, or Questions you
asked the demonstrators, and their solutions.

• A brief summary
The reports for the weekly exercises should be submitted for marking as soon as the work
is finished and no later than before the next lecture. Exercises must be submitted
electronically as a single WORD document using the VITAL system.

Exercises handed in late, after marked work has been returned to other students, will not be
awarded any marks.

Save all work you produce on a memory stick or on your own disk space on the University
system. You are responsible for ensuring you always can always retrieve a copy of your work
from any week.

PHYS488: Modelling Physical Phenomena (Lecture 1) 6

PHYS488: Some technical points (cont.)

Group Projects:

• In week 5 you will be divided into groups of up to 4, to work together on the final
weekly exercise, and subsequently on the project. You are welcome to choose
the people you want to work with and tell me at the appropriate time.

• In week 11 you will EACH give an individual 12-15 minute continuous
presentation, using PowerPoint, about the group project and your contribution to
it.

• The deadline for handing in the final individual and group report is the end of
week 11; University Rules apply for late submission.

• More details on what is expected in the project presentation and reports will
come in due time.

PHYS488: Modelling Physical Phenomena (Lecture 1) 7

The Java Programming language

Java is a commonly used High Level Programming
language based on the idea of Object Oriented
Programming.

Less High-Level then MathLab bit harder to learn, but
more flexible

Used commonly for internet applications. (“applets”)

Other high level OO languages are C++, …

PHYS488: Modelling Physical Phenomena (Lecture 1) 8

High Level programming languages

Computers make simple manipulations of binary numbers.

To use computers for solving more complex problems we
need to translate these problems into (many) much simpler
steps. This is called programming.

Luckily we don’t have to start from scratch.

High-Level Programming languages provide us with many
standard, complex operations, ready for us to use:

• variable declaration

• mathematical functions

• input and output of data

• .. and much more

PHYS488: Modelling Physical Phenomena (Lecture 1) 9

Object Oriented Programming

Object Oriented (OO) programming is a modern
programming style that allows/forces/encourages to develop
software in a structured manner.

Users add their own tools to the already available ones.

For example:

• further mathematical functions

• more complex programming structures (“Classes”), adapted
to the physical entities or systems they represent.

Practical Advantages:

• write code in such a way that functional parts of it can easily
be used elsewhere or re-used later. You should never have
to write the same code twice.

• hide unnecessary technical detail! So programmers/users
don’t need to see (or even know!) all the details.

(I will also skip a lot of technical detail in this module)

PHYS488: Modelling Physical Phenomena (Lecture 1) 10

The basics of writing and running a program

Writing the program itself (code or source code). Mostly we would use
some dedicated text editor to do this.

Compiling the program. A compiler is used to translate our high-level
code into something the computer can deal with (machine code).

Most compilers will also warn us in case of any errors in our code.

Execution. Once a program has successfully been compiled we can run
or execute the program.

For our Java course we use the BlueJ IDE (Integrated Development
Environment) . This free software package acts as an intelligent editor
to write Java code, compile it and run it.

PHYS488: Modelling Physical Phenomena (Lecture 1) 11

PHYS488: Java information on the Web
Link to the main Java site: http://www.oracle.com/technetwork/java

There is lots of useful stuff on this site. e.g. the mathematical facilities available in
the class Math can be found there; at URL:

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

For more advanced information on other Java classes/packages you can look at

http://docs.oracle.com/javase/8/docs/api/index.html

Another excellent place to find more information on Java is the URL

http://www.csc.liv.ac.uk/~frans/OldLectures/COMP101/comp101.html

This is the material presented to Year 1 students in Computer Science. It contains a
lot of examples that are clearly explained. (Note this course is a much more
extensive treatment of various aspects of object oriented programming than the
current module)

http://math.hws.edu/javanotes/ (a free e-book on programming Java)

http://www.oracle.com/technetwork/java
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
http://docs.oracle.com/javase/8/docs/api/index.html
http://www.csc.liv.ac.uk/~frans/OldLectures/COMP101/comp101.html
http://math.hws.edu/javanotes/

PHYS488: Modelling Physical Phenomena (Lecture 1) 12

PHYS488: First Steps, working in BlueJ
In this module we use the BlueJ IDE (Integrated Development Environment) as an
intelligent editor to write code, compile it, run it and print off program listings.

Proceed as follows to put in a new class (program) in a new project.

1. Start BlueJ running

2. Under the Project menu choose “New Project”

3. Change the “Look in:” option to point at the disk where you want to store your
files.

4. In the “File Name” box type in the name of the Folder you want to create, e.g.
Project1. Click the “CREATE” option and that folder will be created. All java
files for this project will be stored here.

5. In the BlueJ window click the “New Class” option: when prompted, type in the
name of the class you want to create; click the OK option.

6. In the BlueJ window an orange box with the class name now appears. Double
click on this, and an editor window will open showing a template for the new
class. I suggest you select all this text by dragging the mouse and then
delete it. Note the Options > Preferences > Editor menu at the top lets you
change some options, such as the font size shown on the screen.

7. Now type in the Java code for the program, as shown in the examples.

8. To print out a hard copy of the code choose the “Print” option under the “Class”
menu.

PHYS488: Modelling Physical Phenomena (Lecture 1) 13

PHYS488: First Steps, working in BlueJ
9. Once the code is typed in, click “Compile” to compile the code. It will prompt

you if it finds errors. Compiling will automatically save the file for you.

10. Once the code has compiled correctly you run it as follows

a) Close the editor window

b) RIGHT CLICK with the mouse on the orange class box in the BlueJ
window, then select the “void main (String[] args)” option.

c) When the Method Call box pops up, click “Ok”.

d) A Terminal window will open showing the program output (if there is any).

e) You can print this directly or to save it to a file, under the Options menu
in this window choose “Save to file…”.

f) Choose the folder (click on the name) then Type in the file name you want
to save this as. It will be saved in that folder as a .txt file. This can be
opened with MS Wordpad and printed if needed.

11. To modify the code in your program, open the editor again by double clicking
on the orange class name box in the BlueJ window.

12. Go around this loop (points 7 to 12) until you have finished this class.

13. Choose the New Class option to make another program and start from option
(5) above. This new class will be included in the same project.

14. If you close BlueJ and re-start it again, on your own machine it will open the
same project you were in when it was closed.

15. To delete a class from the project, right click on the orange class box and
choose the REMOVE option

PHYS488: Modelling Physical Phenomena (Lecture 1) 14

import java.io.*;

class HelloWorld

{

static PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String[] args)

{

// this part of the program is called the main method

screen.println(" Hello World!");

}

}

The structure of a simple Java Program
Import any external package you

might need.

Definition of the class.

(Here the program

itself is the class)

Definition of the main method. Every

program needs a “main” method

PHYS488: Modelling Physical Phenomena (Lecture 1) 15

The structure of a simple Java Program (cont.)

A few more things to notice:

{ .. } curly brackets to mark the code belonging to a class or the main method

; semi-colon at the end of (most) lines of code

“…” quotation marks to define a text string

// to write comments in the code

Use of indentation to clarify where brackets start and end.

import java.io.*;

class HelloWorld

{

static PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String[] args)

{

// this part of the program is called the main method

screen.println(" Hello World!");

}

}

PHYS488: Modelling Physical Phenomena (Lecture 1) 16

The HelloWorld program: writing output to screen

import java.io.*;

class HelloWorld

{

static PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String[] args)

{

screen.println(" Hello World!");

}

}

PrintWriter : example of the use of a pre-existing Java class with some

useful high level tools (for writing output).

(Some more explanation at the back of the lecture notes. More on the use

of classes, like this one in the following weeks)

“System.out” is the standard output stream of the computer, usually

the screen.

PHYS488: Modelling Physical Phenomena (Lecture 1) 17

Adding some variables

“int” and “double” are primitive data types in Java.

import java.io.*;

class OutputExample

{

static PrintWriter screen = new PrintWriter(System.out,true);

public static void main(String [] args)

{

// this part of the program is called the main method

screen.println("Hello World!");

int numweights = 2;

screen.println(" The number of weights is " + numweights);

double mass =10.5; // mass of something in kg

double velocity = 3345; //velocity in meters per second

double momentum = mass*velocity;

screen.println(" The momentum is " + momentum + " kg m/s");

}

}

This program will print the following lines to the screen:

Hello World!

The number of weights is 2

The momentum is 35122.5 kg m/s

PHYS488: Modelling Physical Phenomena (Lecture 1) 18

Get a number from the keyboard
import java.io.*;

class ReadNumber

{

static BufferedReader keyboard = new BufferedReader (new

InputStreamReader(System.in));

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args) throws IOException

{

screen.println("Please type in the mass in kg ");

double mass = new Double(keyboard.readLine()).doubleValue();

screen.println(" Mass input was " + mass + " kg");

}

}

BufferedReader: example of use of a pre-existing Java class with some useful

high level tools (for reading input).

String: class to store and manipulate text

Double: class with some commands to manipulate variable of type “double”. For
example to interpret a string of characters “1.234e5” as a “double” value. (note
upper/lower case “d”)

“System.in” is the standard input stream of the computer, usually the keyboard.

“throws IOException” warns the computer the program must be interrupted if input

error occurs.

PHYS488: Modelling Physical Phenomena (Lecture 1) 19

Work for Week 1
Please do the following exercises and submit a report, as a Word document, to VITAL as
soon as the work is finished, and no later than before the lecture next week.

The computers to be used are the University machines belonging to the Managed
Network. There should be demonstrators on hand on Tuesday, and on Wednesday
morning in the allocated PC centres.

1) Ensure you can start the BlueJ IDE, type in a simple program, run it and print out the
output. To compile code click the ‘compile’ button. To run code RIGHT CLICK on the
orange box with the chosen class in the initial BlueJ window, and choose the void
main(args) option. (if you cannot find BlueJ, you can download it from www.bluej.org)

2) Save any programs you produce on a memory stick, or your own disk space on the
University system. You are responsible for ensuring you always can always retrieve
a copy of your work from any week.

3) You should visit the official BlueJ site at www.bluej.org and download a copy of the
BlueJ manual for yourself from http://www.bluej.org/doc/bluej-ref-manual.pdf

You can also download BlueJ and the Java development kit onto your own home
machines from the web if you have an internet connection.

PTO

http://www.bluej.org/
http://www.bluej.org/
http://www.bluej.org/doc/bluej-ref-manual.pdf

PHYS488: Modelling Physical Phenomena (Lecture 1) 20

Work for Week 1 (cont.)
4) Programs to write:

a) Type in the InputDataExample.java program, run it and ensure you are happy with
what it is doing. Visit the URL
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html and download or print off
a copy of this documentation. Type in and run the Classes MathExamples and the
PrimativeDataTypes that you have been given. Again, ensure you appreciate what
these examples are showing you about Java.

[1 mark]

b) Produce a Java program to calculate the examples a) to g) given on pages 2 and 3 of
the hand-out “Notes on Relativistic Dynamics”. Write the program so that you can
type in things like the mass or speed of the particle. Ensure you can do relativistic
calculations using MeV, MeV/c and MeV/c2 units.

[3 marks]

c) Produce a simple Java program that asks the user for the E, px, py and pz values of
the four-vectors of two particles (in MeV, MeV/c and MeV/c2 units). Use these values
to calculate and print to the screen , the absolute momentum and the mass (using
E2=p2+m2) of the two particles. Then add the two four-vector together to get a third
four-vector and calculate (and print to screen) the absolute momentum and mass of
the later as well. Run the program using the following input values for four-vector 1=(5,
4, 0, 0) and four-vector 2=(5, -4, 0, 0)

[2 marks]

Write a report on the work done that satisfies the criteria listed on slide 5. (NOTE: the work
for week 1 will be handed in together with that for week 2 as 1 word document, at the end of
week 2. It is strongly recommended to discuss your write-up for week1 with the
module organiser during week 2 so you have some feedback, before handing in the
combined week 1+2 report for marking.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

PHYS488: Modelling Physical Phenomena (Lecture 1) 21

Example: class InputDataExample
// Example of program to input some data

import java.io.*;

class InputDataExample

{

static BufferedReader keyboard = new

BufferedReader (new InputStreamReader(System.in)) ;

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args) throws IOException

{

String name; double height;int age;

screen.println("Please type in your name ");

// this next line gets a string of characters from the keyboard

name = keyboard.readLine(); // note the L in readLine()

screen.println("\n\nHello " + name);// this outputs the characters

screen.println("Please type in your height in metres ");

// this next line converts the characters to a floating point variable

height = new Double(keyboard.readLine()).doubleValue();

screen.println(" Thank you, your height is " + 100*height + " cm");

screen.println(" Please type in your age in years");

// the next line uses the new Java method parseInt()

// to convert the characters to an integer number

age = Integer.parseInt(keyboard.readLine());

int yearOfBirth=2009-age;

screen.println(" You were probably born in " + yearOfBirth);

}

}

PHYS488: Modelling Physical Phenomena (Lecture 1) 22

Example: class PrimativeDataTypes
import java.io.*;

class PrimitiveDataTypes

{

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args)

{

// declare some primative variable types

boolean b = false;

char c ='R'; // need quotes '' to store the Unicode value

byte j = 127; // this is maximum value allowed (8 bits)

short k=32767; // short integer maximum value (16 bits)

int m = 2147483647; // integer maximum value (32 bits)

long n =9223372036854775807L; // maximum value for long integer (64 bits)

float x =3.14159F; // float variables are accurate to about 7 decimals

double y =Math.PI; // double variables are accurate to about 15 decimals.

screen.println(" The value of b = " + b);

screen.println(" The value of c = " + c);

screen.println(" The value of j = " + j);

screen.println(" The value of k = " + k);

screen.println(" The value of m = " + m);

screen.println(" The value of n = " + n);

screen.println(" The value of x = " + x);

screen.println(" The value of y = " + y);

}

}

PHYS488: Modelling Physical Phenomena (Lecture 1) 23

Example: class MathExamples
import java.io.*;

class MathExamples

{

static PrintWriter screen = new PrintWriter(System.out, true);

public static void main (String [] args)

{

// Find the square root of a number

double r = 12.33;

double ans = Math.sqrt(r);

screen.println(" The square root of " + r + " is = " + ans);

// Pi is built in

double area = Math.PI*r*r;

screen.println(" Area of circle with radius " + r + " is = " + area);

/* The method Atan2(y,x) gives the angle of line from the

origin to (x,y) in the correct quadrant */

double x = -1;

double y = -2;

double angle = Math.atan2(y, x);

// returns angle in RADIANS in the range -PI < angle <PI

screen.println(" Angle = " + angle + " rad, or " + angle*180/Math.PI + " degrees");

// This also works if you have the sine and cosine of the angle

double sinTheta = y/Math.sqrt(x*x + y*y);

double cosTheta = x/Math.sqrt(x*x + y*y);

double angleb = Math.atan2(sinTheta, cosTheta);

screen.println(" Angleb = " + angleb + " radians");

}

}

PHYS488: Modelling Physical Phenomena (Lecture 1) 24

Stuff to read for next week:

Chapters that discuss what is covered in week 1 lecture and exercises:

1.5, (1.6), (1.8), 1.11, 1.12, 1.13, 2.9 + some extra (advanced) notes on

the following slides.

Chapters that discuss what is covered in week 2 lecture and exercises:

3.1, 4.1, 4.2, 5.1, 5.2, 5.3, 7.1

PHYS488: Modelling Physical Phenomena (Lecture 1) 25

Some further information

In the program ReadNumber there was an example of the use of very

condensed code, which occurs sometimes in Object-Oriented

programming:

.

double mass = new Double(keyboard.readLine()).doubleValue();

.

. . . .

String text = keyboard.readLine();

Double x = new Double(text);

double mass = x.doubleValue();

. . . .

is equivalent to

The first reduces the length of a program and in this case also reduces

memory usage. However, it can also make the program harder to

understand. Use sensibly…

PHYS488: Modelling Physical Phenomena (Lecture 1) 26

PrintWriter and BufferedReader Classes

Example of a pre-existing Java classes with some high level tools we

will use.

PrintWriter:
http://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html

Set of basic commands (printf,format,println,..) for

writing output. We can choose to send the output to the screen

(System.out) or for example to a file.

BufferedReader:
http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

Set of basic commands (read,readLine,skip,..) for reading

character input. We can choose to read the input from the keyboard

(System.in) or for example from a file.

http://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html
http://docs.oracle.com/javase/8/docs/api/java/io/BufferedReader.html

PHYS488: Modelling Physical Phenomena (Lecture 1) 27

String and Double Classes

Example of a pre-existing Java class with some high level tools we will
use.

String:
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Class to store and manipulate text

Double:
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html

Class with some commands to manipulate double variable (beyond the
standard operations for the Java type double). For example to interpret
a string of characters “1.234e5” as a floating point value.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Double.html

