A simple model of the ATLAS Upgrade tracker

- Assume all particles originate from the origin $(x, y)=(0,0)$ with a given momentum traveling in a randomly chosen direction
- Assume that on their way particles encounter
- the wall of a Berilium beam pipe ($r=35 \mathrm{~mm}$, thickness $=3 \mathbf{m m}$)
- Silicon detector layer $1(r=45 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer $2(r=80 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer 3 ($r=120 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm}$)
- Silicon detector layer $4(r=180 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer $5(r=300 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer $6(r=400 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer $7(r=500 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon detector layer $8(r=700 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm})$
- Silicon trigger layer 9A ($r=900 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm}$)
- Silicon trigger layer 9B ($r=910 \mathrm{~mm}$, thickness $=0.5 \mathrm{~mm}$)
- The particles always travel in a B-field of 4 T pointing along the zdirection.

Charged particle in a magnetic field

Magnetic force: $\vec{F}=q(\vec{v} \times \vec{B})$ or $|F|=q v_{\perp} B$

Then a particle starting at $\left(x_{0}, y_{0}\right)$ will describe the trajectory:
$\left(x-x_{0}-|r| \sin \left(\varphi+Q \frac{\pi}{2}\right)\right)^{2}+\left(y-y_{0}-|r| \cos \left(\varphi+Q \frac{\pi}{2}\right)\right)^{2}=r^{2}$
where $Q= \pm 1$ and $\varphi=\tan ^{-1}\left(\frac{P_{y}}{P_{x}}\right)$

Getting P_{T} from the detector measurements

