
PSA-Diffusion-Triple

January 10, 2026

1 Numerical calculation of PSA levels
1.1 Table of contents
-Notes: »
-Introduction: »
–Cell type codes: »
–Increase tumour size - making duplications: »
-Load libraries and initialise random number generator: »
-Functions: »
–List body data: »
–Plot body data: »
–Set initial PSA levels: »
–Set PSA level in borders: »
–Find exterior cells: »
–Find area of blood/tumour interface: »
–Diffuse, create and decay PSA: »
–Plot time development of PSA levels: »
–Choose position for duplicate cell: »
–Show all changes in body: »
–Find new cell positions: »
–Shift cells to new positions: »
–Update PSA array: »
–Reset body steering values: »
-Overview of running of model: »
-Run complete model: »
-End of model run: »
-Code cell template: »

1.2 Notes
Nothing at the moment.

1.3 Introduction
Model a prostate tumour and the resulting production of prostate specific antigen (PSA). Define
a “body”, a rectangular 3D grid of “cells”. Make some of them prostate, some tumour, and some
blood cells. Surround these with a “border”, an outer layer that could be used to simplify the
application of boundary conditions during calculation of the changes in PSA concentration. The

1

overall size of the body does not change, so make this large enough to encompasss some tumour
growth! PSA is produced at a low rate in the prostate and at a higher rate in the tumour cells and
diffuses through these cells into the blood. The PSA also decays and the rate of decay is higher in
the blood than in the prostate and tumour cells.

Figure 1 Illustration in two dimensions of rectangular grid of cells, with flow of PSA from cell to
cell and PSA generation and decay.

Model diffusion as transfer of PSA from one cell (1, 1) to its neighbours (1, 0), (2, 2), (0, 1) and (2,
1) in a time step of length 𝛿𝑡. The amount transferred is proportional to the PSA concentration in
the cell. the length of the common boundary and of the time step. Similarly, the neighbouring cells
transfer PSA into the central cell. Labelling as 𝜌10 the PSA level in cell (1, 0), as 𝜌11 the density
in cell (1, 1) and so on, and assuming all the boundaries are of the same length, the change in the
quantity of PSA in the central cell in the time interval 𝛿𝑡 can then be expressed as:

𝛿11 = 𝛿𝑡 𝛽 (𝜌01 + 𝜌10 + 𝜌21 + 𝜌12 − 4𝜌11) .

Here, 𝛽 is a constant of proportionality (which incorporates factors like the length of the cell
boundary, its permeability etc.).

Allow for the generation of PSA in the cells; 𝜎11 is the amount of PSA produced in cell (1, 1) per
unit time:

𝛿11 = 𝛿𝑡 𝛽 (𝜌01 + 𝜌10 + 𝜌21 + 𝜌12 − 4𝜌11) + 𝛿𝑡 𝜎11.

The rate of generation of PSA is different in different cell types.

A further necessary component is PSA decay. Adding this, the above equation becomes:

𝛿11 = 𝛿𝑡 𝛽 (𝜌01 + 𝜌10 + 𝜌21 + 𝜌12 − 4𝜌11) + 𝛿𝑡 𝜎11 − 𝛿𝑡
𝜏 𝜌11

2

Here, 𝜏 is the lifetime of PSA. It is different in tumour or prostate cells and in the blood stream.

The amount of PSA in each of the neighbouring cells changes in the same manner.

This model can be extended to three dimensions. Using an obvious extension of the notation (and
assuming the areas connecting the cells are the same), we have:

𝛿111 = 𝛿𝑡 𝛽 (𝜌011 + 𝜌101 + 𝜌211 + 𝜌121 + +𝜌110 + 𝜌112 − 6𝜌111) + 𝛿𝑡 𝜎111 − 𝛿𝑡
𝜏 𝜌111.

As the blood flows past the prostate and tumour, the PSA diffusing into the blood is shared
between a large number of cells, resulting in a dilution factor for blood cells. Further, the (effective)
diffusion between blood cells is not the same as in “static” cells. Assume that the diffusion in blood
cells is essentially instantaneous. (Model this by defining a layer of blood cells adjacent to the
prostate/tumour, diffuse PSA into these in the standard way, find the average PSA level in this
layer, and assign it to all blood cells.)

The number of cells in the body may change. In particular, the tumour may grow. Initially, assume
that cell division happens at the surface of the tumour. The new cell is created next to a tumour
cell and the displaced cell moves to another adjacent “neighbour” posisiont. The neighbour moves
to the nearest site outside the tumour and prostate. This last cell will extend into the blood so the
overall prostate/tumour size will increase.

Cell death has yet to be implemented, but cells, in particular tumour cells, do die. Consider whether
to shrink the prostate/tumour when this happens, or to leave a (blood-filled?) void.

1.3.1 Cell type codes

Cell types are coded as follows.

In body:

Description Code Notes
Unspecifed 0
Test -1
Border 1 Border of body, thickness 1 cell
Blood 2
Prostate 3
Tumour 4

In body_steer:

Description Code Notes
Unspecified 0
Surface 1 Layer of cells immediately outside tumour
Duplicate 2 Cell to be replicated
Exterior 3 Blood layer outside prostate/tumour
End 4 Position to which cell overwritten by duplicate is moved
Neighbour 5 Position to which duplicate written

3

Description Code Notes

1.3.2 Increase tumour size - making duplications

Find the “surface” cells that lie around the tumour (i.e. cells for which one above is not tumour
and/or one below is not tumour and/or one to the left is not tumour and/or one to the right is not
tumour).
Choose one surface cell to be the position into which the replicated/duplicated cell goes.
Find the “end” cell, the blood cell closest to the cell to be duplicated.
The codes for these cells are stored in the body_steer array.
Find a “neighbour” cell, adjacent to the cell that will accept the duplicate (change cell code in
body_steer appropriately).
Copy the cell type originally in the duplicate position into the neighbour position and the original
neighbour into the end cell position (in body).
Create a new tumour cell (in body) at the duplicate position.

1.4 Load libraries and initialise random number generator
Return to ToC: »

[1]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#
import matplotlib.cm as cm
rng = np.random.default_rng()
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.301824

Date and time 2026-01-10 14:33:54.863079
Time since last check is 0:00:00.561255

1.5 Functions
1.5.1 List body data

Return to ToC: »

4

[2]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def list_body_sums():

'''
List numbers of different type of cells in body and body_steer arrays
'''
n_border = np.sum(body == c_border)
n_blood = np.sum(body == c_blood)
n_prostate = np.sum(body == c_prostate)
n_tumour = np.sum(body == c_tumour)
print(" ")
print("Body")
print("No. body border cells",n_border)
print("No. body blood cells",n_blood)
print("No. body prostate cells",n_prostate)
print("No. body tumour cells",n_tumour)
print("No. body cells A",n_border + n_blood + n_prostate + n_tumour)
n_surface = np.sum(body_steer == c_surface)
n_duplicate = np.sum(body_steer == c_duplicate)
n_exterior = np.sum(body_steer == c_exterior)
n_end = np.sum(body_steer == c_end)
n_neighbour_s = np.sum(body_steer == c_neighbour)
print(" ")
print("Steer")
print("No. steer surface cells",n_surface)
print("No. steer duplicate cells",n_duplicate)
print("No. steer exterior cells",n_exterior)
print("No. steer end cells",n_end)
print("No. steer neighbour cells",n_neighbour)
print("No. steer cells",(n_surface + n_duplicate + n_exterior + n_end +␣

↪n_neighbour))
#
return

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.869095

Date and time 2026-01-10 14:33:54.869618
Time since last check is 0:00:00.000523

5

1.5.2 Plot body data

Return to ToC: »

[3]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def plot_body(title, body_data, body_index, i_point, j_point, k_point,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour, plot_surface,
plot_duplicate, plot_exterior, plot_end, plot_neighbour,␣

↪plot_test, plot_2D, plot_log,
c_map, v_min = -1, v_max = -1):

'''
Plot body_data in 3D (and in 2D if required) with optional fixed limits on␣

↪the colour map.
The data shown are selected using body_index.
'''
debug = False
#
Markers for 3D and 2D plots
m3_point = '*'
m3_border = 's'
m3_blood = '.'
m3_prostate = 'o'
m3_tumour = 'o'
m3_surface = 'o'
m3_duplicate = 'o'
m3_exterior = 'o'
m3_end = 'o'
m3_neighbour = 'o'
m3_test = '*'
#
m2_point = '*'
m2_border = 's'
m2_blood = '.'
m2_prostate = '+'
m2_tumour = 'x'
m2_surface = 's'
m2_duplicate = 'D'
m2_exterior = '.'
m2_end = '^'
m2_neighbour = 'v'
m2_test = '*'
#
Sizes for 3D and 2D plots
s3_point = 20

6

s3_border = 0.0
s3_blood = 0.001
s3_prostate = 0.05
s3_tumour = 5
s3_surface = 5
s3_duplicate = 20
s3_exterior = 5
s3_end = 20
s3_neighbour = 20
s3_test = 10
#
s2_point = 20
s2_border = 20
s2_blood = 0.05
s2_prostate = 10
s2_tumour = 10
s2_surface = 10
s2_duplicate = 20
s2_exterior = 10
s2_end = 20
s2_neighbour = 20
s2_test = 10
#
if plot_log:

plot_data = np.log(np.maximum(body_data, 1e-6*np.ones_like(body_data)))
else:

plot_data = body_data
#
if debug:

print(" ")
print(f"Input v_min {v_min:.2f}, v_max {v_max:.2f}.")

if v_min < 0:
v_min = np.amin(plot_data)

if v_max < 0:
v_max = np.amax(plot_data)

if v_min >= v_max:
v_min = v_max - 0.1

if plot_test:
v_max = v_max + 1

#
if debug:

print(" ")
print(f"Used v_min {v_min:.2f}, v_max {v_max:.2f}.")

#
Make 3D plot
fig = plt.figure(figsize = (5, 7))
#

7

ax = fig.add_subplot(1, 1, 1, projection = '3d')
ax.set_title(f"{title}, xyz")
#
if plot_blood:

i_plot, j_plot, k_plot = np.where(body == c_blood)
blood_body = plot_data[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_blood, s = s3_blood, vmin= v_min, vmax = v_max,
c = blood_body, alpha = 0.3, label = "Blood", cmap = c_map)

#
if plot_border:

i_plot, j_plot, k_plot = np.where(body == c_border)
border_body = plot_data[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_border, s =s3_border, vmin= v_min, vmax = v_max,
c = border_body, alpha = 0.3, label = "Border", cmap = c_map)

#
if plot_prostate:

i_plot, j_plot, k_plot = np.where(body == c_prostate)
prostate_body = plot_data[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_prostate, s = s3_prostate, vmin= v_min, vmax =␣
↪v_max,

c = prostate_body, alpha = 0.3, label = "Prostate", cmap =␣
↪c_map)

#
if plot_tumour:

i_plot, j_plot, k_plot = np.where(body == c_tumour)
tumour_body = plot_data[i_plot, j_plot, k_plot]
im_t = ax.scatter(i_plot, j_plot, k_plot,

marker = m3_tumour, s = s3_tumour, vmin= v_min, vmax␣
↪= v_max,

c = tumour_body, alpha = 1.0, label = "Tumour", cmap␣
↪= c_map)

#
if plot_surface:

i_plot, j_plot, k_plot = np.where(body_index == c_surface)
surface_index = body_index[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_surface, s = s3_surface, vmin= v_min, vmax =␣
↪v_max,

c = surface_index, alpha = 1.0, label = "Surface", cmap =␣
↪c_map)

#
if plot_duplicate:

i_plot, j_plot, k_plot = np.where(body_index == c_duplicate)

8

dup_index = body_index[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_duplicate, s = s3_duplicate, vmin= v_min, vmax =␣
↪v_max,

c = dup_index, alpha = 1.0, label = "Duplicate", cmap =␣
↪c_map)

#
if plot_exterior:

i_plot, j_plot, k_plot = np.where(body_index == c_exterior)
exterior_index = body_index[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_exterior, s = s3_exterior, vmin= v_min, vmax =␣
↪v_max,

c = exterior_index, alpha = 1.0, label = "Exterior", cmap =␣
↪c_map)

#
if plot_end:

i_plot, j_plot, k_plot = np.where(body_index == c_end)
end_index = body_index[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_end, s = s3_end, vmin= v_min, vmax = v_max,
c = end_index, alpha = 1.0, label = "End", cmap = c_map)

#
if plot_neighbour:

i_plot, j_plot, k_plot = np.where(body_index == c_neighbour)
neigh_index = body_index[i_plot, j_plot, k_plot]
ax.scatter(i_plot, j_plot, k_plot,

marker = m3_neighbour, s = s3_neighbour, vmin= v_min, vmax =␣
↪v_max,

c = neigh_index, alpha = 1.0, label = "Neighbour", cmap =␣
↪c_map)

#
if plot_test:

i_plot, j_plot, k_plot = np.where(body_index == c_test)
test_body = plot_data[i_plot, j_plot, k_plot]
test_index = body_index[i_plot, j_plot, k_plot]
test_use = np.maximum(test_body, test_index) + 1
im_t = ax.scatter(i_plot, j_plot, k_plot,

marker = m3_test, s = s3_test, vmin= v_min, vmax =␣
↪v_max,

c = test_use, alpha = 1.0, label = title, cmap =␣
↪c_map)

#
if plot_point:

ax.scatter(i_point, j_point, k_point,
marker = m3_point, s = s3_point,

9

color = 'r', alpha = 1.0, label = "Point")
#
ax.set_xlim(0, n_cells_x + 2*n_edge - 1)
ax.set_ylim(0, n_cells_y + 2*n_edge - 1)
ax.set_zlim(0, n_cells_z + 2*n_edge - 1)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
#
ax.legend(loc = 'lower right')
ax.zaxis.labelpad = 3.0
#
Finish and display 3D plot
fig.colorbar(im_t, ax = ax, fraction = 0.025, pad = 0.15)
#
plt.tight_layout()
plt.show()
#
Make 2D plots if required
if plot_2D:

fig = plt.figure(figsize = (7, 7))
#
ax_xy = fig.add_subplot(2, 2, 1)
ax_xy.set_title(f"{title}, plane at k = {k_point}")
#
ax_xz = fig.add_subplot(2, 2, 2)
ax_xz.set_title(f"{title}, plane at j = {j_point}")
#
ax_yz = fig.add_subplot(2, 2, 3)
ax_yz.set_title(f"{title}, plane at i = {i_point}")
#
if plot_blood:

i_plot, j_plot = np.where(body[:, :, k_point] == c_blood)
colors = plot_data[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_blood, s = s2_blood, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "Blood", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body[:, j_point, :] == c_blood)
colors = plot_data[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_blood, s = s2_blood, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "Blood", cmap =␣
↪c_map)

10

#
j_plot, k_plot = np.where(body[i_point, :, :] == c_blood)
colors = plot_data[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_blood, s = s2_blood, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "Blood", cmap =␣
↪c_map)

#
if plot_border:

i_plot, j_plot = np.where(body[:, :, k_point] == c_border)
colors = plot_data[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_border, s = s2_border, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Border", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body[:, j_point, :] == c_border)
colors = plot_data[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_border, s = s2_border, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Border", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body[i_point, :, :] == c_border)
colors = plot_data[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_border, s = s2_border, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Border", cmap =␣
↪c_map)

#
if plot_prostate:

i_plot, j_plot = np.where(body[:, :, k_point] == c_prostate)
colors = plot_data[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_prostate, s = s2_prostate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Prostate", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body[:, j_point, :] == c_prostate)
colors = plot_data[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

11

marker = m2_prostate, s = s2_prostate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Prostate", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body[i_point, :, :] == c_prostate)
colors = plot_data[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_prostate, s = s2_prostate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Prostate", cmap =␣
↪c_map)

#
if plot_tumour:

i_plot, j_plot = np.where(body[:, :, k_point] == c_tumour)
colors = plot_data[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_tumour, s = s2_tumour, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Tumour", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body[:, j_point, :] == c_tumour)
colors = plot_data[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_tumour, s = s2_tumour, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Tumour", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body[i_point, :, :] == c_tumour)
colors = plot_data[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_tumour, s = s2_tumour, vmin= v_min, vmax␣
↪= v_max,

c = colors, alpha = 1.0, label = "Tumour", cmap =␣
↪c_map)

#
if plot_surface:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_surface)
colors = body_index[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_surface, s = s2_surface, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Surface", cmap =␣
↪c_map)

12

#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_surface)
colors = body_index[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_surface, s = s2_surface, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Surface", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body_index[i_point,:, :] == c_surface)
colors = body_index[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_surface, s = s2_surface, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Surface", cmap =␣
↪c_map)

#
if plot_duplicate:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_duplicate)
colors = body_index[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_duplicate, s = s2_duplicate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Duplicate", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_duplicate)
colors = body_index[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_duplicate, s = s2_duplicate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Duplicate", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body_index[i_point,:, :] == c_duplicate)
colors = body_index[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_duplicate, s = s2_duplicate, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Duplicate", cmap =␣
↪c_map)

#
if plot_exterior:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_exterior)
colors = body_index[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

13

marker = m2_exterior, s = s2_exterior, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Exterior", cmap =␣
↪c_map)

#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_exterior)
colors = body_index[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_exterior, s = s2_exterior, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Exterior", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body_index[i_point,:, :] == c_exterior)
colors = body_index[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_exterior, s = s2_exterior, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Exterior", cmap =␣
↪c_map)

#
if plot_end:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_end)
colors = body_index[i_plot, j_plot, k_point]
ax_xy.scatter(i_plot, j_plot,

marker = m2_end, s = s2_end, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "End", cmap = c_map)
#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_end)
colors = body_index[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_end, s = s2_end, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "End", cmap = c_map)
#
j_plot, k_plot = np.where(body_index[i_point,:, :] == c_end)
colors = body_index[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_end, s = s2_end, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = "End", cmap = c_map)
#
if plot_neighbour:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_neighbour)
colors = body_index[i_plot, j_plot, k_point]

14

ax_xy.scatter(i_plot, j_plot,
marker = m2_neighbour, s = s2_neighbour, vmin= v_min,␣

↪vmax = v_max,
c = colors, alpha = 1.0, label = "Neighbour", cmap =␣

↪c_map)
#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_neighbour)
colors = body_index[i_plot, j_point, k_plot]
ax_xz.scatter(i_plot, k_plot,

marker = m2_neighbour, s = s2_neighbour, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Neighbour", cmap =␣
↪c_map)

#
j_plot, k_plot = np.where(body_index[i_point,:, :] == c_neighbour)
colors = body_index[i_point, j_plot, k_plot]
ax_yz.scatter(j_plot, k_plot,

marker = m2_neighbour, s = s2_neighbour, vmin= v_min,␣
↪vmax = v_max,

c = colors, alpha = 1.0, label = "Neighbour", cmap =␣
↪c_map)

#
if plot_test:

i_plot, j_plot = np.where(body_index[:, :, k_point] == c_test)
colors_body = plot_data[i_plot, j_plot, k_point]
colors_index = body_index[i_plot, j_plot, k_point]
colors = np.maximum(colors_body, colors_index) + 1
ax_xy.scatter(i_plot, j_plot,

marker = m2_test, s = s2_test, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = title, cmap = c_map)
#
i_plot, k_plot = np.where(body_index[:, j_point, :] == c_test)
colors_body = plot_data[i_plot, j_point, k_plot]
colors_index = body_index[i_plot, j_point, k_plot]
colors = np.maximum(colors_body, colors_index) + 1
ax_xz.scatter(i_plot, k_plot,

marker = m2_test, s = s2_test, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = title, cmap = c_map)
#
j_plot, k_plot = np.where(body_index[i_point, :, :] == c_test)
colors_body = plot_data[i_point, j_plot, k_plot]
colors_index = body_index[i_point, j_plot, k_plot]
colors = np.maximum(colors_body, colors_index) + 1
ax_yz.scatter(j_plot, k_plot,

15

marker = m2_test, s = s2_test, vmin= v_min, vmax =␣
↪v_max,

c = colors, alpha = 1.0, label = title, cmap = c_map)
#
ax_xy.set_xlim(0, n_cells_x + 2*n_edge - 1)
ax_xy.set_ylim(0, n_cells_y + 2*n_edge - 1)
ax_xy.set_xlabel('x')
ax_xy.set_ylabel('y')
ax_xy.legend(loc = 'lower right')
#
ax_xz.set_xlim(0, n_cells_x + 2*n_edge - 1)
ax_xz.set_ylim(0, n_cells_z + 2*n_edge - 1)
ax_xz.set_xlabel('x')
ax_xz.set_ylabel('z')
ax_xz.legend(loc = 'lower right')
#
ax_yz.set_xlim(0, n_cells_y + 2*n_edge - 1)
ax_yz.set_ylim(0, n_cells_z + 2*n_edge - 1)
ax_yz.set_xlabel('y')
ax_yz.set_ylabel('z')
ax_yz.legend(loc = 'lower right')
#
plt.tight_layout()
plt.show()

#
return

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.964266

Date and time 2026-01-10 14:33:54.968202
Time since last check is 0:00:00.003936

1.5.3 Set initial PSA levels

Return to ToC: »

[4]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def initialise_PSA(set_level, r_prop, with_plots, i_plot, j_plot, k_plot):

'''
Set initial PSA levels for body

16

'''
#
debug = False
with_plots = True
#
For PSA values set 1
if set_level == 2:

init_fact = 1.0
elif set_level == 1:

init_fact = 0.5
else:

init_fact = 0.0001
#
For PSA values set 2
#init_fact *= 20
#
PSA array
PSA = np.zeros((n_is, n_js, n_ks))
#
Set concentration in blood.
n_blood = np.sum(body == c_blood)
if set_level == 2:

PSA[body == c_blood] = (0.8*init_fact*sig_prostate*np.ones(n_blood)*
(1 + r_prop*rng.random(n_blood)))

elif set_level == 1:
PSA[body == c_blood] = (0.1*init_fact*sig_prostate*np.ones(n_blood)*

(1 + r_prop*rng.random(n_blood)))
else:

PSA[body == c_blood] = 0.0
#
Set concentration in prostate
n_prostate = np.sum(body == c_prostate)
PSA[body == c_prostate] = (init_fact*sig_prostate*np.ones(n_prostate)*

(1 + r_prop*rng.random(n_prostate)))
#
Set concentration in tumour
n_tumour = np.sum(body == c_tumour)
PSA[body == c_tumour] = (init_fact*sig_tumour*np.ones(n_tumour)*

(1 + r_prop*rng.random(n_tumour)))
#
Set concentration in borders
PSA = set_borders(n_is, n_js, n_ks, PSA)
#
if debug:

print(" ")
print(f"Min initial PSA value {np.amin(PSA):.4f}")
print(f"Max initial PSA value {np.amax(PSA):.4f}")

17

#
if with_plots:

title = "PSA, t = 0"
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = True
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
#plot_log = True
#c_map = cm.viridis
c_map = cm.plasma
#
plot_body(title, PSA, body_steer, i_plot, j_plot, k_plot, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#

return PSA
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.975952

Date and time 2026-01-10 14:33:54.976353
Time since last check is 0:00:00.000401

1.5.4 Set PSA level in borders

Return to ToC: »

[5]: import datetime
now = datetime.datetime.now()

18

print("Date and time",str(now))
#
def set_borders(n_is, n_js, n_ks, PSA):

'''
Set PSA concentrations in border to values in adjacent body cells.
'''
i = 0
for j in range(0, n_js):

for k in range(0, n_ks):
PSA[i, j, k] = PSA[i + 1, j, k]

i = n_is - 1
for j in range(0, n_js):

for k in range(0, n_ks):
PSA[i, j, k] = PSA[i - 1, j, k]

j = 0
for i in range(0, n_is):

for k in range(0, n_ks):
PSA[i, j, k] = PSA[i, j + 1, k]

j = n_js - 1
for i in range(0, n_is):

for k in range(0, n_ks):
PSA[i, j, k] = PSA[i, j - 1, k]

k = 0
for i in range(0, n_is):

for j in range(0, n_js):
PSA[i, j, k] = PSA[i, j, k + 1]

k = n_ks - 1
for i in range(0, n_is):

for j in range(0, n_js):
PSA[i, j, k] = PSA[i, j, k - 1]

#
return PSA

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.983548

Date and time 2026-01-10 14:33:54.984018
Time since last check is 0:00:00.000470

1.5.5 Find exterior cells

Exterior cells are the blood cells immediately outside the protate and tumour.

Return to ToC: »

19

[6]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def find_exterior(with_plots):

'''
Find cells immediately outside prostate and tumour
'''
#
Find indices of cells in prostate and tumour
i_pt, j_pt, k_pt = np.where(np.logical_or(body == c_prostate, body ==␣

↪c_tumour))
#
Check not at border
out_of_body = False
if np.amax(i_pt) + 2 > n_is or np.amin(i_pt) < 2:

print(f"Body limit reached in x: min(i_pt) = {np.amin(i_tp)}, max(i_pt)␣
↪= {np.amax(i_pt)}")

out_of_body = True
if np.amax(j_pt) + 2 > n_js or np.amin(j_pt) < 2:

print(f"Body limit reached in y: min(j_pt) = {np.amin(j_pt)}, max(j_pt)␣
↪= {np.amax(j_pt)}")

out_of_body = True
if np.amax(k_pt) + 2 > n_ks or np.amin(k_pt) < 2:

print(f"Body limit reached in z: min(k_pt) = {np.amin(k_pt)}, max(k_pt)␣
↪= {np.amax(k_pt)}")

out_of_body = True
if out_of_body:

return body_steer, out_of_body
#
n_new = np.sum(i_pt > 0)
#
Find exterior cells and update flags in body_steer
for n in range(0, n_new):

indices = i_pt[n] - 1, j_pt[n], k_pt[n]
if body[indices] == c_blood:

body_steer[indices] = c_exterior
#
indices = i_pt[n] + 1, j_pt[n], k_pt[n]
if body[indices] == c_blood:

body_steer[indices] = c_exterior
#
indices = i_pt[n], j_pt[n] - 1, k_pt[n]
if body[indices] == c_blood:

body_steer[indices] = c_exterior
#
indices = i_pt[n], j_pt[n] + 1, k_pt[n]

20

if body[indices] == c_blood:
body_steer[indices] = c_exterior

#
indices = i_pt[n], j_pt[n], k_pt[n] - 1
if body[indices] == c_blood:

body_steer[indices] = c_exterior
#
indices = i_pt[n], j_pt[n], k_pt[n] + 1
if body[indices] == c_blood:

body_steer[indices] = c_exterior
#

if with_plots:
#
Make plots showing surface cells
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = False
plot_dup = False
plot_ext = True
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = f"Exterior, ({i_tumour}, {j_tumour}, {k_tumour})"
plot_body(title, body_steer, body_steer, i_tumour, j_tumour, k_tumour,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
return body_steer, out_of_body

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

21

Date and time 2026-01-10 14:33:54.992689

Date and time 2026-01-10 14:33:54.993175
Time since last check is 0:00:00.000486

1.5.6 Find area of blood/tumour interface

Identify “btcells”, tumour cells in immediate contact with the blood.

Return to ToC: »

[7]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def area_tumour_blood(with_plots, i_time, i_plot, j_plot, k_plot):

'''
Find the area of the tumour/blood interface
'''
if with_plots:

body_steer_org = np.zeros((n_is, n_js, n_ks))
body_steer_org[:] = body_steer[:]

#
Find indices of cells in tumour
i_t, j_t, k_t = np.where(body == c_tumour)
#
n_new = np.sum(i_t > 0)
area = 0
#
Find interface cells and number of faces in contact with blood cells.
for n in range(0, n_new):

cell = i_t[n], j_t[n], k_t[n]
indices = i_t[n] - 1, j_t[n], k_t[n]
if body[indices] == c_blood:

body_steer[cell] = c_test
area += 1

#
indices = i_t[n] + 1, j_t[n], k_t[n]
if body[indices] == c_blood:

body_steer[cell] = c_test
area += 1

#
indices = i_t[n], j_t[n] - 1, k_t[n]
if body[indices] == c_blood:

body_steer[cell] = c_test
area += 1

#
indices = i_t[n], j_t[n] + 1, k_t[n]

22

if body[indices] == c_blood:
body_steer[cell] = c_test
area += 1

#
indices = i_t[n], j_t[n], k_t[n] - 1
if body[indices] == c_blood:

body_steer[cell] = c_test
area += 1

#
indices = i_t[n], j_t[n], k_t[n] + 1
if body[indices] == c_blood:

body_steer[cell] = c_test
area += 1

#
btcell = area > 0
#
if with_plots and btcell:

#
Steer plotting
plot_point = False
plot_border = True
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = True
#
plot_log = False
plot_2D = False
#
v_min = -1.0
v_max = -1.0
#
title = f"Interface, time {i_time}"
plot_body(title, body, body_steer, i_plot, j_plot, k_plot, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#
body_steer[:] = body_steer_org[:]

#

23

return btcell, area
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:54.999501

Date and time 2026-01-10 14:33:55.000162
Time since last check is 0:00:00.000661

1.5.7 Diffuse, create and decay PSA

Return to ToC: »

[8]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def do_diffusion(PSA, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots, i_plot, j_plot, k_plot):
'''
Run diffusion for existing body.
'''
debug = False
#
#dt = 0.04 # PSA values set 1
dt = 0.0001 # PSA values set 2
nt_min = 2

#nt_min = 20
#
if with_init:

#
Initialise PSA here again so don't have to rerun above cell!
with_plots = True
PSA = initialise_PSA(set_level, r_prop, with_plots, i_plot, j_plot,␣

↪k_plot)
#

#c_map = cm.viridis
c_map = cm.plasma
#
Choose times at which PSA distribution plotted
make_plot = np.zeros(4).astype(int)
make_plot[0] = 1
make_plot[1] = n_times//16
make_plot[2] = n_times//4

24

make_plot[3] = n_times - 1
#
time = np.zeros(n_times)
i_ptime = np.zeros(n_times).astype(int)
n_tplots = 5
tplot_i = np.zeros(n_tplots).astype(int)
tplot_j = np.zeros(n_tplots).astype(int)
tplot_k = np.zeros(n_tplots).astype(int)
tplot_i[0], tplot_j[0], tplot_k[0] = i_plot, j_plot, k_plot
tplot_i[1], tplot_j[1], tplot_k[1] = n_is//2, n_js//2, n_ks//2
tplot_i[2], tplot_j[2], tplot_k[2] = 0, 0, 0
tplot_i[3], tplot_j[3], tplot_k[3] = 1, 1, 1
tplot_i[4], tplot_j[4], tplot_k[4] = n_is//4, n_js//4, n_ks//4
#
t_dev_ijk = np.zeros((n_times, n_tplots))
t_dev_i = np.zeros((n_times, n_is))
t_dev_j = np.zeros((n_times, n_js))
t_dev_k = np.zeros((n_times, n_ks))
#
Identify exterior cells
with_plots_here = False
body_steer, out_of_body = find_exterior(with_plots_here)
if out_of_body:

return PSA
#
Do diffusion
conv = False
for nt in range(0, n_times):

#
i_ptime[nt] = nt
time[nt] = nt*dt
for tp in range(0, n_tplots):

t_dev_ijk[nt, tp] = PSA[tplot_i[tp], tplot_j[tp], tplot_k[tp]]
#
t_dev_i[nt, :] = PSA[:, j_plot, k_plot]
t_dev_j[nt, :] = PSA[i_plot, :, k_plot]
t_dev_k[nt, :] = PSA[i_plot, j_plot, :]
#
Do PSA diffusion
delta_PSA = np.zeros((n_is, n_js, n_ks))
#
for i in range(n_edge, n_cells_x + n_edge):

for j in range(n_edge, n_cells_y + n_edge):
for k in range(n_edge, n_cells_z + n_edge):

#
Calculate PSA change for prostate, tumour, "exterior"␣

↪blood

25

if (body[i, j, k] == c_prostate or
body[i, j, k] == c_tumour or
body_steer[i, j, k] == c_exterior):
delta_PSA[i, j, k] = dt*beta*(PSA[i - 1, j, k] + PSA[i␣

↪+ 1, j, k] +
PSA[i, j - 1, k] + PSA[i,␣

↪j + 1, k] +
PSA[i, j, k - 1] + PSA[i,␣

↪j, k + 1] -
6*PSA[i, j, k])

#
#

#
Find average of change in exterior PSA level
ext_inds = np.where(body_steer == c_exterior)
avg_new_PSA = np.average(delta_PSA[ext_inds])
#
Set all blood changes to average external PSA value
delta_PSA[body == c_blood] = avg_new_PSA
#
Do PSA decay
n_blood = np.sum(body == c_blood)
delta_PSA[body == c_blood] -= dt/tau_blood*PSA[body == c_blood]
#
n_prostate = np.sum(body == c_prostate)
delta_PSA[body == c_prostate] -= dt/tau_prostate*PSA[body == c_prostate]
#
n_tumour = np.sum(body == c_tumour)
delta_PSA[body == c_tumour] -= dt/tau_tumour*PSA[body == c_tumour]
#
Do PSA creation
delta_PSA[body == c_prostate] += \

dt*sig_prostate*np.ones(n_prostate)*(1 + r_prop*rng.
↪random(n_prostate))

#
delta_PSA[body == c_tumour] += \

dt*sig_tumour*np.ones(n_tumour)*(1 + r_prop*rng.random(n_tumour))
#
PSA = PSA + delta_PSA
#
Update border
PSA = set_borders(n_is, n_js, n_ks, PSA)
#
Interim plot
if nt in make_plot and with_all_plots:

if debug:
print(" ")

26

print(f"Min PSA value {np.amin(PSA):.4f}")
print(f"Max PSA value {np.amax(PSA):.4f}")

#
Steer plotting
plot_point = False
plot_border = True
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
#plot_log = True
plot_log = False
plot_2D = True
#
#v_min = -6.0
#v_max = 1.5
v_min = -1.0
v_max = -1.0
#
title = f"PSA, t = {nt}"
plot_body(title, PSA, body_steer, i_plot, j_plot, k_plot,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test,␣

↪plot_2D, plot_log,
c_map, v_min = v_min, v_max = v_max)

#
ext_test = abs(np.amax(delta_PSA[ext_inds]/PSA[ext_inds]))
inds_here = np.logical_or(body == c_prostate, body == c_tumour)
prostate_test = abs(np.amax(delta_PSA[inds_here]/PSA[inds_here]))
epsilon = 1e-28
if (epsilon < ext_test < conv_test and

epsilon < prostate_test < conv_test and
nt > nt_min):
print(f"Diffusion converged, nt = {nt}, ext_test = {ext_test:.6e}, "

f"prostate_test = {prostate_test:.6e}")
conv = True
break

#
if not conv:

27

print(f"Diffusion didn't converge, nt = {nt}, ext_test = {ext_test:.
↪6e}, "

f"prostate_test = {prostate_test:.6e}")
#

title = f"PSA, t = {nt}"
plot_point = False
plot_border = True
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
#plot_log = True
plot_log = False
#
#v_min = -6.0
#v_max = 1.5
v_min = -1.0
v_max = -1.0
#
if debug:

print(" ")
print(f"Min PSA value {np.amin(PSA):.4f}")
print(f"Max PSA value {np.amax(PSA):.4f}")

#
plot_body(title, PSA, body_steer, i_plot, j_plot, k_plot, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour, plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
i_ptime = i_ptime[0:nt]
tplot_i = tplot_i[0:nt]
tplot_j = tplot_j[0:nt]
tplot_k = tplot_k[0:nt]
t_dev_ijk = t_dev_ijk[0:nt, :]
t_dev_i = t_dev_i[0:nt, :]
t_dev_j = t_dev_j[0:nt, :]
t_dev_k = t_dev_k[0:nt, :]
#

28

plot_time_dev(i_ptime, tplot_i, tplot_j, tplot_k, t_dev_ijk, t_dev_i,␣
↪t_dev_j, t_dev_k,

i_plot, j_plot, k_plot)
#
return PSA

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.013741

Date and time 2026-01-10 14:33:55.014892
Time since last check is 0:00:00.001151

1.5.8 Plot time development of PSA levels

The “time” here is that required for the PSA levels to reach a stable(ish) state.

Return to ToC: »

[9]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def plot_time_dev(time, tplot_i, tplot_j, tplot_k, t_dev_ijk, t_dev_i, t_dev_j,␣

↪t_dev_k,
i_plot, j_plot, k_plot):

'''
Plot time development of PSA concentrations at some specified points, given␣

↪in t_dev_ijk, and
along lines defined by i_plot, j_plot and k_plot.
Make sure the maximum concentrations are in the zeroth component of␣

↪t_dev_ijk if you want
to use the scaling that comes when plot_log = False!
'''
#
debug = False
#
plot_log = True
#
Set times at which lines in i ,j, and k are displayed
plot_time_A = min(5, np.amax(time).astype(int))
plot_step_A = 1
plot_time_B = min(30, np.amax(time).astype(int))
plot_step_B = 10
plot_time_C = np.amax(time).astype(int)

29

plot_step_C = max(np.amax(time).astype(int)//10, 1)
#
Make plots at specified points
n_tplots = len(tplot_i)
#
fig = plt.figure(figsize = (7, 12))
#
ax = fig.add_subplot(4, 1, 1)
ax.set_title(f"PSA with t at specified points")
ax.set_xlabel("t")
if plot_log:

ax.set_ylabel("log(PSA)")
for tp in range(0, n_tplots):

bool_plot = t_dev_ijk[:, tp] > 0
ax.plot(time[bool_plot], np.log(t_dev_ijk[bool_plot, tp]),

label = f"({tplot_i[tp]}, {tplot_j[tp]}, {tplot_k[tp]})")
else:

max_zero = np.amax(t_dev_ijk[:, 0])
max_other = np.amax(t_dev_ijk[:,1:n_tplots])
max_ratio = max_zero/max_other
ax.set_ylabel("PSA")
for tp in range(0, n_tplots):

scale = 1 + 0.2*max_ratio*(tp > 0)
ax.plot(time[:], scale*t_dev_ijk[:, tp],

label = f"scale {scale:.0f}, ({tplot_i[tp]}, {tplot_j[tp]},␣
↪{tplot_k[tp]})")

ax.grid(color = 'g')
ax.legend(loc = "upper right")
#
Make plot at fixed i
plot_log = True
#
cell_x = np.linspace(0, n_is - 1, n_is)
cell_y = np.linspace(0, n_js - 1, n_js)
cell_z = np.linspace(0, n_ks - 1, n_ks)
#
ax = fig.add_subplot(4, 1, 2)
ax.set_title(f"PSA with t along x at i = {i_plot}")
ax.set_xlabel("x")
ax.set_ylabel("PSA")
for nt in range(0, plot_time_A, plot_step_A):

ax.plot(cell_x[:], t_dev_i[nt, :], label = f"t = {nt}")
for nt in range(plot_time_A, plot_time_B, plot_step_B):

ax.plot(cell_x[:], t_dev_i[nt, :], label = f"t = {nt}")
for nt in range(plot_time_B, plot_time_C, plot_step_C):

if nt == plot_time_B:
ax.plot(cell_x[:], t_dev_i[nt, :], label = f"Others, t \geq {nt}")

30

else:
ax.plot(cell_x[:], t_dev_i[nt, :])

if plot_log:
ax.set_yscale('log')

ax.grid(color = 'g')
ax.legend()
#
Make plot at fixed j
ax = fig.add_subplot(4, 1, 3)
ax.set_title(f"PSA with time along y at j = {j_plot}")
ax.set_xlabel("y")
ax.set_ylabel("PSA")
for nt in range(0, plot_time_A, plot_step_A):

ax.plot(cell_y[:], t_dev_j[nt, :], label = f"t = {nt}")
for nt in range(plot_time_A, plot_time_B, plot_step_B):

ax.plot(cell_y[:], t_dev_j[nt, :], label = f"t = {nt}")
for nt in range(plot_time_B, plot_time_C, plot_step_C):

if nt == plot_time_B:
ax.plot(cell_y[:], t_dev_j[nt, :], label = f"Others, t \geq {nt}")

else:
ax.plot(cell_y[:], t_dev_j[nt, :])

if plot_log:
ax.set_yscale('log')

ax.grid(color = 'g')
ax.legend()
#
Make plot at fixed k
ax = fig.add_subplot(4, 1, 4)
ax.set_title(f"PSA with t along z at k = {k_plot}")
ax.set_xlabel("z")
ax.set_ylabel("PSA")
for nt in range(0, plot_time_A, plot_step_A):

ax.plot(cell_z[:], t_dev_k[nt, :], label = f"t = {nt}")
for nt in range(plot_time_A, plot_time_B, plot_step_B):

ax.plot(cell_z[:], t_dev_k[nt, :], label = f"t = {nt}")
for nt in range(plot_time_B, plot_time_C, plot_step_C):

if nt == plot_time_B:
ax.plot(cell_z[:], t_dev_k[nt, :], label = f"Others, t \geq {nt}")

else:
ax.plot(cell_z[:], t_dev_k[nt, :])

ax.plot(cell_z[:], t_dev_k[nt, :])
if plot_log:

ax.set_yscale('log')
ax.grid(color = 'g')
ax.legend()
#
plt.tight_layout()

31

plt.show()
#
return

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.025138

Date and time 2026-01-10 14:33:55.025942
Time since last check is 0:00:00.000804

1.5.9 Choose position for duplicate cell

Return to ToC: »

[10]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def find_duplicator(with_plots):

'''
Find one of cells in tumour surface to serve as position of duplicate
'''
debug = False
#
Check whether there is already a duplicate (can only do one at a time!)
if np.sum(body_steer == c_duplicate) > 0:

print(" ")
print("Found pre-existing duplicate in find_duplicator - stop")
sys.exit(0)
#

duplicate = np.zeros(3).astype(int)
#
Find indices of cells in tumour
out_of_body = False
i_t, j_t, k_t = np.where(body == c_tumour)
if np.amax(i_t) + 2 > n_is or np.amin(i_t) < 2:

print(f"Body limit reached in x: min(i_t) = {np.amin(i_t)}, max(i_t) =␣
↪{np.amax(i_t)}")

out_of_body = True
if np.amax(j_t) + 2 > n_js or np.amin(j_t) < 2:

print(f"Body limit reached in y: min(j_t) = {np.amin(j_t)}, max(j_t) =␣
↪{np.amax(j_t)}")

out_of_body = True
if np.amax(k_t) + 2 > n_ks or np.amin(k_t) < 2:

32

print(f"Body limit reached in z: min(k_t) = {np.amin(k_t)}, max(k_t) =␣
↪{np.amax(k_t)}")

out_of_body = True
#
if out_of_body:

return duplicate, body_steer, out_of_body
#
n_t = len(i_t)
#
Find surface cells and update flags in body_steer array
for n in range(0, n_t):

indices = i_t[n] - 1, j_t[n], k_t[n]
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#
indices = i_t[n] + 1, j_t[n], k_t[n]
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#
indices = i_t[n], j_t[n] - 1, k_t[n]
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#
indices = i_t[n], j_t[n] + 1, k_t[n]
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#
indices = i_t[n], j_t[n], k_t[n] - 1
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#
indices = i_t[n], j_t[n], k_t[n] + 1
if body[indices] != c_tumour:

body_steer[indices] = c_surface
#

if with_plots:
#
Make plots showing surface cells
v_min = -1.0
v_max = -1.0
#
plot_point = False
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = True

33

plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = f"Surface ({i_tumour}, {j_tumour}, {k_tumour})"
plot_body(title, body_steer, body_steer, i_tumour, j_tumour, k_tumour,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
Randomly choose surface cell for duplication
surface = np.where(body_steer == c_surface)
i_surface = surface[0]
j_surface = surface[1]
k_surface = surface[2]
n_surface = len(i_surface)
ind_dup = rng.integers(0, high = n_surface, size = 1)[0]
i_dup = i_surface[ind_dup]
j_dup = j_surface[ind_dup]
k_dup = k_surface[ind_dup]
#
duplicate[0] = i_dup
duplicate[1] = j_dup
duplicate[2] = k_dup
#
if debug:

print(" ")
print("i_t \n",i_t)
print("j_t \n",j_t)
print("k_t \n",k_t)
print(f"i_surface {i_surface}, j_surface {j_surface}, k_surface␣

↪{k_surface}")
print(f"n_surface {n_surface}")
print(f"ind_dup {ind_dup}")
print(f"i_dup {i_dup}, j_dup {j_dup}, k_dup {k_dup}")
print(f"Duplicate body type {body[i_dup, j_dup, k_dup]}")

#

34

Keep this below the debug printout above or you will get confused as␣
↪c_duplicate

overwrites one of the surface values!
body_steer[i_dup, j_dup, k_dup] = c_duplicate
#
if with_plots:

#
Make plot showing the cell to be duplicated
v_min = -1.0
v_max = -1.0
#
plot_point = False
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = True
plot_dup = True
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = f"Duplicate ({i_dup}, {j_dup}, {k_dup})"
plot_body(title, body_steer, body_steer, i_tumour, j_tumour, k_tumour,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh,plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
#
return duplicate, body_steer, out_of_body

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.036898

Date and time 2026-01-10 14:33:55.037734

35

Time since last check is 0:00:00.000836

1.5.10 Show all changes in body

Return to ToC: »

[11]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def show_change(body_org, i_plot, j_plot, k_plot, with_plots, title):

'''
Plot changes due to duplication(s). Highlight changes between body_org and␣

↪current body.
'''
debug = False
#
body_change = np.zeros((n_is, n_js, n_ks))
#
Label changes as test
body_change[body != body_org] = c_test
if debug:

print(" ")
print("np.where(body_change == c_test)",np.where(body_change == c_test))

#
i_change, j_change, k_change = np.where(body_change == c_test)
if debug:

print(" ")
print(f"Number of body changes detected {int(np.sum(body_change ==␣

↪c_test))}")
print(f"Change i min {np.amin(i_change)}, i max {np.amax(i_change)}")
print(f"Change j min {np.amin(j_change)}, j max {np.amax(j_change)}")
print(f"Change k min {np.amin(j_change)}, k max {np.amax(j_change)}")
print(" ")
print(f"Change x min {cell_x[np.amin(i_change)]}, x max {cell_x[np.

↪amax(i_change)]}")
print(f"Change y min {cell_y[np.amin(j_change)]}, y max {cell_y[np.

↪amax(j_change)]}")
print(f"Change z min {cell_z[np.amin(k_change)]}, z max {cell_z[np.

↪amax(k_change)]}")
print(" ")
print(f"Prostate centre, indices {i_prostate}, {j_prostate},␣

↪{k_prostate}")
print(f"Prostate radius {prostate_rad}")
print(" ")
print(f"Tumour centre, indices {i_tumour}, {j_tumour}, {k_tumour}")
print(f"Tumour radius {tumour_rad}")

36

#
Make plot showing changes due to duplication
if with_plots:

print("")
v_min = -1.0
v_max = -1.0
#
plot_point = True
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = True
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
plot_body(title, body_change, body_change, i_plot, j_plot, k_plot,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

return
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.045047

Date and time 2026-01-10 14:33:55.045475
Time since last check is 0:00:00.000428

1.5.11 Find new cell positions

Return to ToC: »

37

[12]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def position_finder(body_steer, i_dup, j_dup, k_dup, with_plots):

'''
Find the "neighbour" cell position to accommodate the "duplicate" and the␣

↪"end" position
for the neighbour. The end is a position outside the prostate and tumour.␣

↪If
compact is True, an attempt is first made to find a neighbour that is not␣

↪part of the tumour
and after that, tumour cells are allowed ot be neighbours. If compact is␣

↪False,
tumour cells are allowed to be nighours from the start.
'''
debug = False
compact = True
#
neighbour = np.zeros(3).astype(int)
end_point = np.zeros(3).astype(int)
#
Check whether there are too many duplicates (can only do one at a time!)
n_duplicates = np.sum(body_steer == c_duplicate)
if n_duplicates > 1:

print(" ")
print(f"Found {n_duplicates} duplicates in position_finder - stop")
sys.exit(0)

#
Find distances from cell to be duplicated to exterior cells
If find_exterior has already been run, don't do it again!
n_ext = np.sum(body_steer == c_exterior)
if n_ext < 1:

body_steer, out_of_body = find_exterior(with_plots)
if out_of_body:

return body_steer, neighbour, end_point, out_of_body
#
n_ext = np.sum(body_steer == c_exterior)
d_to_e_sq = np.zeros(n_ext)
i_d_to_e, j_d_to_e, k_d_to_e = np.where(body_steer == c_exterior)
d_to_e_sq = (i_dup - i_d_to_e)**2 + (j_dup - j_d_to_e)**2 + (k_dup -␣

↪k_d_to_e)**2
#
Find indices in dup_to_ext_sq that give minimum distance
min_dist_ind = np.argsort(d_to_e_sq)
#

38

Randomly order min_dist_ind where there are groups of distances that are␣
↪the same

(Not sure that this is necessary!)
new_dist_ind = np.zeros(n_ext).astype(int)
#
un_dist_array, un_dist_ind, n_un_dist = np.unique(d_to_e_sq, return_index =␣

↪True,
return_inverse = False,
return_counts = True)

n_groups = len(n_un_dist)
n_bot = 0
for n in range(0, n_groups):

n_top = n_bot + n_un_dist[n]
inds_here = np.zeros(n_un_dist[n]).astype(int)
inds_here[0:n_un_dist[n]] = min_dist_ind[n_bot:n_top]
rng.shuffle(inds_here)
new_dist_ind[n_bot:n_top] = inds_here[0:n_un_dist[n]]
n_bot = n_top

#
Use below rather than above if don't want to do explicit random ordering!
#new_dist_ind = min_dist_ind
#
Define "end" cell, checking that it is not same as duplicate.
duplicate = np.array([i_dup, j_dup, k_dup]).astype(int)
origin = np.zeros(3).astype(int)
end_test = np.zeros(3).astype(int)
if debug:

print(" ")
print("Find end point")
print("No. in exterior, len(min_dist_ind)",len(min_dist_ind))
print("i_dup, j_dup, k_dup",i_dup, j_dup, k_dup)

#
w = 0
out_of_body = False
while w < len(new_dist_ind) and np.all(end_point == origin):

min_ind = new_dist_ind[w]
end_test[0] = i_d_to_e[min_ind]
end_test[1] = j_d_to_e[min_ind]
end_test[2] = k_d_to_e[min_ind]
if debug:

print(f"w {w}, end_point {end_point}, end_test {end_test}")
if not np.all(end_test == duplicate):

min_d_to_e = min_ind
end_point[:] = end_test[:]

w += 1
if np.all(end_point == origin):

print(" ")

39

print("No end point found - stop")
sys.exit(0)

if debug:
print(" ")
print(f"duplicate {duplicate}")
print(f"end_point {end_point}")

#
i_end, j_end, k_end = end_point[0], end_point[1], end_point[2]
if i_end > n_is - 2 or i_end < 2:

print(" ")
print(f"End point out of body, i_end {i_end}")
out_of_body = True

if j_end > n_js - 2 or j_end < 2:
print(" ")
print(f"End point out of body, j_end {j_end}")
out_of_body = True

if k_end > n_ks - 2 or k_end < 2:
print(" ")
print(f"End point out of body, k_end {k_end}")
out_of_body = True

if out_of_body:
return body_steer, neighbour, end_point, out_of_body

#
body_steer[i_end, j_end, k_end] = c_end
#
if with_plots:

#
Make plot showing the cell to be duplicated and end cell
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = True
plot_dup = True
plot_ext = True
plot_end = True
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = f"End ({i_end}, {j_end}, {k_end})"

40

plot_body(title, body_steer, body_steer, i_end, j_end, k_end,␣
↪plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#

Choose "neighbour" cell to shift to end position. Cell adjacent to␣
↪duplicate can be prostate,

tumour or blood. Will be shifted to blood position. Pick cell to shift at␣
↪random,

but check it isn't the end_point cell. If comact is True, check also that␣
↪it's

not a tumour cell!
if i_dup > n_is - 2 or i_dup < 2:

print(" ")
print(f"Duplicate point out of body, i_dup {i_dup}")
out_of_body = True

if j_dup > n_js - 2 or j_dup < 2:
print(" ")
print(f"Duplicate point out of body, j_dup {j_dup}")
out_of_body = True

if k_dup > n_ks - 2 or k_dup < 2:
print(" ")
print(f"Duplicate point out of body, k_dup {k_dup}")
out_of_body = True

if out_of_body:
return body_steer, neighbour, end_point, out_of_body

#
chooser = np.linspace(0, 5, 6).astype(int)
rng.shuffle(chooser)
neighbours = np.zeros((6, 3)).astype(int)
neighbours[0, :] = np.array([i_dup - 1, j_dup, k_dup])
neighbours[1, :] = np.array([i_dup + 1, j_dup, k_dup])
neighbours[2, :] = np.array([i_dup, j_dup - 1, k_dup])
neighbours[3, :] = np.array([i_dup, j_dup + 1, k_dup])
neighbours[4, :] = np.array([i_dup, j_dup, k_dup - 1])
neighbours[5, :] = np.array([i_dup, j_dup, k_dup + 1])
#
origin = np.zeros(3).astype(int)
if debug:

print(" ")
print("Find neighbour")

#
if compact:

41

w = 0
while w < 6 and np.all(neighbour == origin):

if not np.logical_or(np.all(neighbours[chooser[w], :] == end_point),
body[*neighbours[chooser[w]]] ==␣

↪c_tumour):
neighbour[:] = neighbours[w, :]

if debug:
print(f"neighbour one, w {w}, end_point {end_point}, end_test␣

↪{end_test}")
w += 1

if np.all(neighbour == origin):
w = 0
while w < 6 and np.all(neighbour == origin):

if not np.all(neighbours[chooser[w], :] == end_point):
neighbour[:] = neighbours[chooser[w], :]

if debug:
print(f"neighbour two, w {w}, end_point {end_point}, end_test␣

↪{end_test}")
w += 1

#
if np.all(neighbour == origin):

print(" ")
print("No neighbour found - stop")
sys.exit(0)

#
body_steer[neighbour[0], neighbour[1], neighbour[2]] = c_neighbour
if debug:

print(" ")
print(f"duplicate {duplicate}")
print(f"end_point {end_point}")
print(f"neighbour {neighbour}")

if with_plots:
#
Make plot showing neighbour, cell to be duplicated and end cell
print(" ")
print("duplicate", i_dup, j_dup, k_dup)
print("number of duplicates", np.sum(body_steer == c_duplicate))
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = False
plot_blood = False
plot_prostate = False
plot_tumour = False
plot_surface = True
plot_dup = True
plot_ext = True

42

plot_end = True
plot_neigh = True
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = f"Neighbour ({neighbour[0]}, {neighbour[1]}, {neighbour[2]})"
plot_body(title, body_steer, body_steer, *neighbour, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#

return body_steer, neighbour, end_point, out_of_body
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.062920

Date and time 2026-01-10 14:33:55.064442
Time since last check is 0:00:00.001522

1.5.12 Shift cells to new positions

Return to ToC: »

[13]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def cell_shifter(duplicate, neighbour, end_point, with_plots):

'''
Shift the "neighbour" cell in the body array to the "end" position and the
"duplicate" to the neighbour position.
'''
debug = False
#
if debug:

print(f" ")
print(f"duplicate {duplicate}")
print(f"end_point {end_point}")
print(f"neighbour {neighbour}")

43

print(" ")
print("Initial values")
print("body[*duplicate]",body[*duplicate])
print("body[*neighbour]",body[*neighbour])
print("body[*end_point]",body[*end_point])

#
body[*end_point] = body[*neighbour]
body[*neighbour] = body[*duplicate]
body[*duplicate] = c_tumour
#
if debug:

print(" ")
print("New values")
print("body[*duplicate]",body[*duplicate])
print("body[*neighbour]",body[*neighbour])
print("body[*end_point]",body[*end_point])

#
if with_plots:

#
Make plot showing results of copying
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = False
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = "After PSA update"
plot_body(title, body, PSA, i_end, j_end, k_end, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#

return body

44

#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.071540

Date and time 2026-01-10 14:33:55.072171
Time since last check is 0:00:00.000631

1.5.13 Update PSA array

Return to ToC: »

[14]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def PSA_updater(PSA, duplicate, neighbour, endpoint, with_plots):

'''
Update the PSA array using the "neighbour", "end", and "duplicate"␣

↪positions.
'''
debug = False
#
PSA[*end_point] = PSA[*neighbour]
PSA[*neighbour] = PSA[*duplicate]
PSA[*duplicate] = np.mean(PSA[body == c_tumour])
#
if with_plots:

#
Make plot showing results of updating
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = False
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True

45

plot_log = False
#c_map = cm.viridis
c_map = cm.plasma
#
title = "After PSA update"
plot_body(title, body, PSA, i_end, j_end, k_end, plot_point,

plot_border, plot_blood, plot_prostate, plot_tumour,␣
↪plot_surface,

plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣
↪plot_log,

c_map, v_min = v_min, v_max = v_max)
#

return PSA
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.077794

Date and time 2026-01-10 14:33:55.078147
Time since last check is 0:00:00.000353

1.5.14 Reset body steering values

Return to ToC: »

[15]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
def body_steer_reset(with_plots):

'''
Reset indices in body_steer used to indicate surface cells, cell to␣

↪duplicate,
exterior cells etc.
'''
#
Surface
bool_sel = np.where(body_steer == c_surface)
body_steer[bool_sel] = 0
#
Duplicate
bool_sel = np.where(body_steer == c_duplicate)
body_steer[bool_sel] = 0
#
Exterior

46

bool_sel = np.where(body_steer == c_exterior)
body_steer[bool_sel] = 0
#
End
bool_sel = np.where(body_steer == c_end)
body_steer[bool_sel] = 0
#
Neighbour
bool_sel = np.where(body_steer == c_neighbour)
body_steer[bool_sel] = 0
#
Test
bool_sel = np.where(body_steer == c_test)
body_steer[bool_sel] = 0
#
if with_plots:

#
Make plot showing result of reset
v_min = -1.0
v_max = -1.0
plot_point = False
plot_border = True
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = True
plot_dup = True
plot_ext = True
plot_end = True
plot_neigh = True
plot_test = True
#
plot_2D = True
plot_log = False
c_map = cm.viridis
#
title = "After reset"
plot_body(title, body_steer, body_steer, i_dup, j_dup, k_dup,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour,␣

↪plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
return body_steer

#

47

then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:33:55.084385

Date and time 2026-01-10 14:33:55.084773
Time since last check is 0:00:00.000388

1.6 Overview of running of model
In order to investigate changes in PSA as prostate cancer develops: 1) Initialise body structure:
border, blood, and prostate. 2) Initialise PSA levels. 3) Run diffusion to get a “zero” point. 4)
Add a tumour cell or cells. 5) Initialise PSA levels with the tumour. 6) Run diffusion. 7) Grow the
tumour. 8) Run diffusion.

Repeat 7) and 8) until maximum required (or possible) tumour size reached.
After each run of diffusion, record the PSA level in the blood and other relevant variables.

1.7 Run complete model
Return to ToC: »

[19]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
Set number of PSA arrays
triple True and double True implies use PSA_top, PSA_mid and PSA_bot
triple False and double True implies use PSA_top and PSA_bot
triple and double False implies use PSA_top only.
To get top and bottom limits (using triple or double), set with_init True.
If have wuth_init True and triple and double False, PSA_top array will be␣

↪reinitialised
after each duplication. If with_init is False, initialisation only happens␣

↪when the
body is first created.
triple = False
double = False
with_init = False
growth_rate = 0.2
#n_real_times = 45
#n_real_times = 35
n_real_times = 25
#
Set cell codes
#
c_test = -1

48

c_border = 1
c_blood = 2
c_prostate = 3
c_tumour = 4
c_next = 5
#
c_surface = 1
c_duplicate = 2
c_exterior = 3
c_end = 4
c_neighbour = 5
#
Initialise body without tumour
#
debug = False
with_plots = False
#
Width of edge of array, n_edge, should be set to 1.
#(The name n_edge is used as a reminder throughout that there is an edge!)
n_edge = 1
#
Number of cells
#n_cells_x, n_cells_y, n_cells_z = 25, 27, 29
n_cells_x, n_cells_y, n_cells_z = 45, 47, 49
#n_cells_x, n_cells_y, n_cells_z = 50, 52, 54
#n_cells_x, n_cells_y, n_cells_z = 60, 62, 64
#n_cells_x, n_cells_y, n_cells_z = 70, 72, 74
#n_cells_x, n_cells_y, n_cells_z = 84, 84, 84
#
Number if cells in body array
n_is = n_cells_x + 2*n_edge
n_js = n_cells_y + 2*n_edge
n_ks = n_cells_z + 2*n_edge
n_body = n_is*n_js*n_ks
body = np.zeros((n_is, n_js, n_ks)).astype(int)
body_steer = np.zeros((n_is, n_js, n_ks)).astype(int)
#
print(" ")
print(f"Body dimensions {n_is} in x, {n_js} in y, {n_ks} in z.")
print(f"Body size {n_body} cells.")
#
Define prostate centre and radius (can be in centre of body or offset to␣

↪allow for more growth)
centre = True
#
prostate_rad = 8
prostate_rad_2 = prostate_rad**2

49

#
if centre:

i_prostate = n_edge + n_cells_x//2
j_prostate = n_edge + n_cells_y//2
k_prostate = n_edge + n_cells_z//2

else:
i_prostate = n_edge + int(2*prostate_rad)
j_prostate = n_edge + int(2*prostate_rad)
k_prostate = n_edge + int(2*prostate_rad)

#
print(" ")
print(f"Prostate centre, indices {i_prostate}, {j_prostate}, {k_prostate}")
print(f"Prostate radius {prostate_rad}")
#
Define tumour centre and radius
tumour_rad = 0.6
tumour_rad_2 = tumour_rad**2
if centre:

i_tumour = i_prostate - prostate_rad//3
j_tumour = j_prostate - prostate_rad//4
k_tumour = k_prostate + prostate_rad//4

else:
i_tumour = i_prostate + prostate_rad//2
j_tumour = j_prostate + prostate_rad//3
k_tumour = k_prostate + prostate_rad//2

#
print(" ")
print(f"Tumour centre, indices {i_tumour}, {j_tumour}, {k_tumour}")
print(f"Tumour radius {tumour_rad}")
#
index = 0
for i in range(0, n_is):

for j in range(0, n_js):
for k in range(0, n_ks):

dist_prostate_2 = ((i - i_prostate)**2 +
(j - j_prostate)**2 +
(k - k_prostate)**2)

#
if dist_prostate_2 < prostate_rad_2:

body[i, j, k] = c_prostate
#

elif (i < n_edge or j < n_edge or k < n_edge or
i > n_cells_x + n_edge - 1 or
j > n_cells_y + n_edge - 1 or
k > n_cells_z + n_edge - 1):
body[i, j, k] = c_border

else:

50

body[i, j, k] = c_blood
#

#
#

n_border_init = np.sum(body == c_border)
n_blood_init = np.sum(body == c_blood)
n_prostate_init = np.sum(body == c_prostate)
n_tumour_init = np.sum(body == c_tumour)
print(" ")
print(f"Initial number of cells in border is {n_border_init}")
print(f"Initial number of blood cells is {n_blood_init}")
print(f"Initial number of cells in prostate is {n_prostate_init}")
print(f"Initial number of cells in tumour is {n_tumour_init}")
print(f"Tumour growth rate is {growth_rate:.3f}")
#
if with_plots:

plot_point = False
plot_border = False
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
#
c_map = cm.viridis
#c_map = cm.plasma
#
v_min = -1.0
v_max = -1.0
plot_body("Body", body, body_steer, i_tumour, j_tumour, k_tumour,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour, plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
Initialise PSA without tumour
PSA decay rates set 1
#tau_prostate = 1/20.0
#tau_tumour = tau_prostate

51

#tau_blood = 1/2.0
#
PSA production rates set
#sig_prostate = 2.0
#sig_tumour = 20.0
#sig_blood = 0.0
#
PSA decay rates set 2
tau_prostate = 0.000217
tau_tumour = tau_prostate
tau_blood = 0.000144
#
PSA production rates set 2
sig_prostate = 0.00802
sig_tumour = 0.96
sig_blood = 0.0
#
Blood dilution factor
dil_blood = 0.02
#
Set "diffusion" coefficient
beta = 0.1
#
Allow for a proportion of random variation if required
r_prop = 0.0
#
Set up large scale time array
times = np.linspace(0, n_real_times - 1, n_real_times).astype(int)
i_time = 0
print(f"---",

f"\b------------------------")
print(f"Time {times[i_time]}")
#
print("Initialise PSA_top, no tumour")
set_level = 2
PSA_top = initialise_PSA(set_level, r_prop, with_plots, i_prostate, j_prostate,␣

↪k_prostate)
if triple:

print("Initialise PSA_mid, no tumour")
set_level = 1
PSA_mid = initialise_PSA(set_level, r_prop, with_plots, i_prostate,␣

↪j_prostate, k_prostate)
if double:

print("Initialise PSA_bot, no tumour")
set_level = 0
PSA_bot = initialise_PSA(set_level, r_prop, with_plots, i_prostate,␣

↪j_prostate, k_prostate)

52

#
Simulate diffusion, creation and decay of PSA without tumour
#
n_times = 250
conv_test = 0.001
with_all_plots = False
print("Diffusion PSA_top, no tumour")
set_level = 2
PSA_top = do_diffusion(PSA_top, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,
i_prostate, j_prostate, k_prostate)

if triple:
print("Diffusion PSA_mid, no tumour")
set_level = 1
with_init_here = False
PSA_mid = do_diffusion(PSA_mid, beta, r_prop, n_times, conv_test,

with_init_here, set_level, with_all_plots,
i_prostate, j_prostate, k_prostate)

if double:
print("Diffusion PSA_bot, no tumour")
set_level = 0
PSA_bot = do_diffusion(PSA_bot, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,
i_prostate, j_prostate, k_prostate)

#
Store PSA level at this time
#
PSA_top_time = np.zeros(n_real_times)
PSA_mid_time = np.zeros(n_real_times)
PSA_bot_time = np.zeros(n_real_times)
#
area_time = np.zeros(n_real_times)
btcell_time = np.zeros(n_real_times)
tumour_time = np.zeros(n_real_times)
prostate_time = np.zeros(n_real_times)
blood_time = np.zeros(n_real_times)
#
PSA_top_level = np.mean(PSA_top[body == c_blood])
if triple:

PSA_mid_level = np.mean(PSA_mid[body == c_blood])
if double:

PSA_bot_level = np.mean(PSA_bot[body == c_blood])
#
tumour_cells = np.sum(body == c_tumour)
prostate_cells = np.sum(body == c_prostate)
blood_cells = np.sum(body == c_blood)
#

53

PSA_top_time[i_time] = PSA_top_level
if triple:

PSA_mid_time[i_time] = PSA_mid_level
if double:

PSA_bot_time[i_time] = PSA_bot_level
#
tumour_time[i_time] = tumour_cells
prostate_time[i_time] = prostate_cells
blood_time[i_time] = blood_cells
print(f"At time {times[i_time]}:")
print(f"No. tumour cells {tumour_cells}, "

f"prostate cells {prostate_cells}, blood cells {blood_cells}")
print(f"PSA_top_level {PSA_top_level:.6e}")
if triple:

print(f"PSA_mid_level {PSA_mid_level:.6e}")
if double:

print(f"PSA_bot_level {PSA_bot_level:.6e}")
#
Add initial tumour
#
i_time = 1
print(f"---",

f"\b------------------------")
print(f"Time {times[i_time]}")
#
debug = False
with_plots = True
#
index = 0
for i in range(0, n_is):

for j in range(0, n_js):
for k in range(0, n_ks):

dist_tumour_2 = ((i - i_tumour)**2 +
(j - j_tumour)**2 +
(k - k_tumour)**2)

#
if dist_tumour_2 < tumour_rad_2:

body[i, j, k] = c_tumour
#

#
#

n_border_init = np.sum(body == c_border)
n_blood_init = np.sum(body == c_blood)
n_prostate_init = np.sum(body == c_prostate)
n_tumour_init = np.sum(body == c_tumour)
print(" ")
print(f"Number of cells in border is {n_border_init}")

54

print(f"Number of blood cells is {n_blood_init}")
print(f"Number of cells in prostate is {n_prostate_init}")
print(f"Number of cells in tumour is {n_tumour_init}")
#
if with_plots:

plot_point = False
plot_border = False
plot_blood = True
plot_prostate = True
plot_tumour = True
plot_surface = False
plot_dup = False
plot_ext = False
plot_end = False
plot_neigh = False
plot_test = False
#
plot_2D = True
plot_log = False
#
c_map = cm.viridis
#c_map = cm.plasma
#
v_min = -1.0
v_max = -1.0
plot_body("Body", body, body_steer, i_tumour, j_tumour, k_tumour,␣

↪plot_point,
plot_border, plot_blood, plot_prostate, plot_tumour, plot_surface,
plot_dup, plot_ext, plot_end, plot_neigh, plot_test, plot_2D,␣

↪plot_log,
c_map, v_min = v_min, v_max = v_max)

#
Simulate diffusion, creation and decay of PSA with initial tumour
#
print("Diffusion PSA_top, with initial tumour")
set_level = 2
PSA_top = do_diffusion(PSA_top, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,
i_tumour, j_tumour, k_tumour)

if triple:
print("Diffusion PSA_mid, with initial tumour")
set_level = 1
with_init_here = False
PSA_mid = do_diffusion(PSA_mid, beta, r_prop, n_times, conv_test,

with_init_here, set_level, with_all_plots,
i_tumour, j_tumour, k_tumour)

if double:

55

print("Diffusion PSA_bot, with initial tumour")
set_level = 0
PSA_bot = do_diffusion(PSA_bot, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,
i_tumour, j_tumour, k_tumour)

#
Store PSA level at this time
#
PSA_top_time[i_time] = PSA_top_level
if triple:

PSA_mid_time[i_time] = PSA_mid_level
if double:

PSA_bot_time[i_time] = PSA_bot_level
#
with_plots_here = True
i_plot, j_plot, k_plot = i_tumour, j_tumour, k_tumour
btcell, bt_area = area_tumour_blood(with_plots_here, i_time, i_plot, j_plot,␣

↪k_plot)
#
area_time[i_time] = bt_area
btcell_time[i_time] = btcell
tumour_time[i_time] = tumour_cells
prostate_time[i_time] = prostate_cells
blood_time[i_time] = blood_cells
print(f"At time {times[i_time]}:")
print(f"No. tumour cells {tumour_cells}, "

f"prostate cells {prostate_cells}, blood cells {blood_cells}")
print(f"PSA_top_level {PSA_top_level:.6e}")
if triple:

print(f"PSA_mid_level {PSA_mid_level:.6e}")
if double:

print(f"PSA_bot_level {PSA_bot_level:.6e}")
#
i_time = 2
out_of_body = False
while i_time < n_real_times and not out_of_body:

#
Increase tumour size - make duplications
#
␣

↪print(f"---",
f"\b------------------------")

print(f"Time {times[i_time]}")
body_org = np.zeros((n_is, n_js, n_ks))
body_org[:] = body[:]
#
n_duplicates = int(np.exp(growth_rate*(i_time - 2)))

56

#
with_plots = False
for i in range(0, n_duplicates):

duplicate, body_steer, out_of_body = find_duplicator(with_plots)
if out_of_body:

break
body_steer, neighbour, end_point, out_of_body = \

position_finder(body_steer, *duplicate, with_plots)
if out_of_body:

break
body = cell_shifter(duplicate, neighbour, end_point, with_plots)
PSA_top = PSA_updater(PSA_top, duplicate, neighbour, end_point,␣

↪with_plots)
if triple:

PSA_mid = PSA_updater(PSA_mid, duplicate, neighbour, end_point,␣
↪with_plots)

if double:
PSA_bot = PSA_updater(PSA_bot, duplicate, neighbour, end_point,␣

↪with_plots)
#

body_steer = body_steer_reset(with_plots)
#
if out_of_body:

break
with_plots = False
title = "δ " + str(n_duplicates) + " duplications"
show_change(body_org, i_tumour, j_tumour, k_tumour, with_plots, title)
#
Simulate diffusion, creation and decay of PSA with enlarged tumour
#
print("Diffusion PSA_top, with tumour")
set_level = 2
PSA_top = do_diffusion(PSA_top, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,
i_tumour, j_tumour, k_tumour)

if triple:
print("Diffusion PSA_mid, with tumour")
set_level = 1
with_init_here = False
PSA_mid = do_diffusion(PSA_mid, beta, r_prop, n_times, conv_test,

with_init_here, set_level, with_all_plots,
i_tumour, j_tumour, k_tumour)

if double:
print("Diffusion PSA_bot, with tumour")
set_level = 0
PSA_bot = do_diffusion(PSA_bot, beta, r_prop, n_times, conv_test,

with_init, set_level, with_all_plots,

57

i_tumour, j_tumour, k_tumour)
#
Store PSA level at this time
PSA_top_level = np.mean(PSA_top[body == c_blood])
if triple:

PSA_mid_level = np.mean(PSA_mid[body == c_blood])
if double:

PSA_bot_level = np.mean(PSA_bot[body == c_blood])
#
tumour_cells = np.sum(body == c_tumour)
prostate_cells = np.sum(body == c_prostate)
blood_cells = np.sum(body == c_blood)
#
PSA_top_time[i_time] = PSA_top_level
if triple:

PSA_mid_time[i_time] = PSA_mid_level
if double:

PSA_bot_time[i_time] = PSA_bot_level
#
with_plots_here = True
i_plot, j_plot, k_plot = i_tumour, j_tumour, k_tumour
btcell, bt_area = area_tumour_blood(with_plots_here, i_time, i_plot,␣

↪j_plot, k_plot)
btcell_time[i_time] = btcell
area_time[i_time] = bt_area
tumour_time[i_time] = tumour_cells
prostate_time[i_time] = prostate_cells
blood_time[i_time] = blood_cells
print(f"At time {times[i_time]}:")
print(f"No. tumour cells {tumour_cells}, "

f"prostate cells {prostate_cells}, blood cells {blood_cells}")
print(f"PSA_top_level {PSA_top_level:.6e}")
if triple:

print(f"PSA_mid_level {PSA_mid_level:.6e}")
if double:

print(f"PSA_bot_level {PSA_bot_level:.6e}")
i_time += 1

#
times = np.linspace(0, i_time - 1, i_time)
blood_time = blood_time[0:i_time]
prostate_time = prostate_time[0:i_time]
tumour_time = tumour_time[0:i_time]
area_time = area_time[0:i_time]
#
PSA_top_time = PSA_top_time[0:i_time]
PSA_mid_time = PSA_mid_time[0:i_time]
PSA_bot_time = PSA_bot_time[0:i_time]

58

#
most_time = blood_time + prostate_time + tumour_time
PSA_cells = tumour_cells + prostate_cells
#
btcell_color = np.zeros(len(tumour_time)).astype(str)
btcell_color[btcell_time > 0] = 'r'
btcell_color[btcell_time == 0] = 'b'
#
face_number = np.zeros(i_time)
face_number[tumour_time < 1] = 0.0
face_number[tumour_time > 0] = area_time[tumour_time > 0]/

↪tumour_time[tumour_time > 0]
#
fig = plt.figure(figsize = (6, 9))
#
ax = fig.add_subplot(3, 1, 1)
ax.set_title("Cells with time")
ax.set_xlabel("Time")
ax.set_ylabel("No. cells")
ax.plot(times, blood_time, marker = 'o', linestyle = ':', color = 'r', label =␣

↪"Blood")
ax.plot(times, tumour_time, marker = 'o', linestyle = ':', color = 'b', label =␣

↪"Tumour")
ax.plot(times, prostate_time, marker = 'o', linestyle = ':', color = 'c', label␣

↪= "Prostate")
ax.set_yscale('log')
ax.grid(color = 'g')
ax.legend()
#
ax = fig.add_subplot(3, 1, 2)
ax.set_title("Tumour cells and interface area with time")
ax.set_xlabel("Time")
ax.set_ylabel("No. cells/cell faces")
ax.plot(times, tumour_time, marker = 'o', linestyle = ':', color = 'r', label =␣

↪"Tumour cells")
ax.plot(times, area_time, marker = 'o', linestyle = ':', color = 'b', label =␣

↪"Interface area")
ax.plot(times, face_number, marker = 'o', linestyle = ':', color = 'c',

label = "Face number")
ax.set_yscale('log')
ax.grid(color = 'g')
ax.legend()
#
ax = fig.add_subplot(3, 1, 3)
ax.set_title("PSA level with time")
ax.set_xlabel("Time")

59

ax.set_ylabel("PSA")
if double:

ax.plot(times, PSA_top_time, marker = 'v', linestyle = '', color = 'k')
ax.plot(times, PSA_bot_time, marker = '^', linestyle = '', color = 'k')
ax.fill_between(times, PSA_bot_time, PSA_top_time, color = 'k', alpha = 0.3)
if triple:

ax.plot(times, PSA_mid_time, marker = '+', linestyle = '-', color = 'k')
else:

ax.plot(times, PSA_top_time, marker = 'o', linestyle = ':', color = 'k')
ax.grid(color = 'g')
#
plt.tight_layout()
plt.show()
#
PSA_cells_time = tumour_time + prostate_time
#
plot_log_here = False
#
fig = plt.figure(figsize = (6, 6))
#
ax = fig.add_subplot(2, 1, 1)
ax.set_title("PSA level as function of tumour cell number")
ax.set_xlabel("No. cells")
ax.set_ylabel("PSA")
if double:

ax.scatter(tumour_time, PSA_top_time, marker = 'v', c = btcell_color)
ax.scatter(tumour_time, PSA_bot_time, marker = '^', c = btcell_color)
ax.fill_between(tumour_time, PSA_bot_time, PSA_top_time, color = 'c', alpha␣

↪= 0.3)
if triple:

ax.scatter(tumour_time, PSA_mid_time, marker = '+', c = btcell_color)
else:

ax.scatter(tumour_time, PSA_top_time, marker = 'o', c = btcell_color)
ax.plot(tumour_time, PSA_top_time, marker = '', linestyle = ':', color =␣

↪'c')
ax.grid(color = 'g')
if plot_log_here and len(tumour_time > 0):

ax.set_xscale('log')
ax.set_yscale('log')

#
ax = fig.add_subplot(2, 1, 2)
ax.set_title("PSA level as function of interface area")
ax.set_xlabel("Area")
ax.set_ylabel("PSA")
if double:

ax.scatter(area_time, PSA_top_time, marker = 'v', c = btcell_color)
ax.scatter(area_time, PSA_bot_time, marker = '^', c = btcell_color)

60

ax.fill_between(area_time, PSA_bot_time, PSA_top_time, color = 'c', alpha =␣
↪0.3)

if triple:
ax.scatter(area_time, PSA_mid_time, marker = '+', c = btcell_color)

else:
ax.scatter(area_time, PSA_top_time, marker = 'o', c = btcell_color)
ax.plot(area_time, PSA_top_time, marker = '', linestyle = ':', color = 'c')

ax.grid(color = 'g')
if plot_log_here:

ax.set_xscale('log')
ax.set_yscale('log')

#
plt.tight_layout()
plt.show()
#
then = now
now = datetime.datetime.now()
print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:38:14.938947

Body dimensions 47 in x, 49 in y, 51 in z.
Body size 117453 cells.

Prostate centre, indices 23, 24, 25
Prostate radius 8

Tumour centre, indices 21, 22, 27
Tumour radius 0.6

Initial number of cells in border is 13818
Initial number of blood cells is 101532
Initial number of cells in prostate is 2103
Initial number of cells in tumour is 0
Tumour growth rate is 0.200
--

Time 0
Initialise PSA_top, no tumour

61

62

Diffusion PSA_top, no tumour
Diffusion converged, nt = 26, ext_test = 6.717227e-04, prostate_test =
2.245043e-04

63

64

65

66

At time 0:
No. tumour cells 0, prostate cells 2103, blood cells 101532
PSA_top_level 4.067385e-11
--

Time 1

Number of cells in border is 13818
Number of blood cells is 101532
Number of cells in prostate is 2102
Number of cells in tumour is 1

67

Diffusion PSA_top, with initial tumour
Diffusion converged, nt = 10, ext_test = 7.471608e-07, prostate_test =
9.488810e-04

68

69

70

71

At time 1:
No. tumour cells 0, prostate cells 2103, blood cells 101532
PSA_top_level 4.067385e-11
--

Time 2
Diffusion PSA_top, with tumour
Diffusion converged, nt = 9, ext_test = 2.461139e-08, prostate_test =
8.809597e-04

72

73

74

At time 2:
No. tumour cells 2, prostate cells 2102, blood cells 101531
PSA_top_level 4.058518e-11
--

Time 3
Diffusion PSA_top, with tumour
Diffusion converged, nt = 9, ext_test = 3.784569e-06, prostate_test =
5.870208e-04

75

76

77

At time 3:
No. tumour cells 3, prostate cells 2102, blood cells 101530
PSA_top_level 5.299088e-11
--

Time 4
Diffusion PSA_top, with tumour
Diffusion converged, nt = 8, ext_test = 1.477116e-07, prostate_test =
8.167133e-04

78

79

80

81

At time 4:
No. tumour cells 4, prostate cells 2102, blood cells 101529
PSA_top_level 5.284337e-11
--

Time 5
Diffusion PSA_top, with tumour
Diffusion converged, nt = 8, ext_test = 7.415641e-08, prostate_test =
6.533519e-04

82

83

84

85

At time 5:
No. tumour cells 5, prostate cells 2102, blood cells 101528
PSA_top_level 5.276988e-11
--

Time 6
Diffusion PSA_top, with tumour
Diffusion converged, nt = 8, ext_test = 6.309882e-09, prostate_test =
5.442749e-04

86

87

88

89

At time 6:
No. tumour cells 7, prostate cells 2102, blood cells 101526
PSA_top_level 5.276619e-11
--

Time 7
Diffusion PSA_top, with tumour
Diffusion converged, nt = 7, ext_test = 4.461020e-07, prostate_test =
7.577286e-04

90

91

92

93

At time 7:
No. tumour cells 9, prostate cells 2102, blood cells 101524
PSA_top_level 5.290530e-11
--

Time 8
Diffusion PSA_top, with tumour
Diffusion converged, nt = 7, ext_test = 3.836313e-04, prostate_test =
6.106183e-04

94

95

96

97

At time 8:
No. tumour cells 12, prostate cells 2102, blood cells 101521
PSA_top_level 6.105627e-11
--

Time 9
Diffusion PSA_top, with tumour
Diffusion converged, nt = 6, ext_test = 8.638301e-04, prostate_test =
8.724802e-04

98

99

100

101

At time 9:
No. tumour cells 16, prostate cells 2102, blood cells 101517
PSA_top_level 8.965983e-11
--

Time 10
Diffusion PSA_top, with tumour
Diffusion converged, nt = 6, ext_test = 5.402198e-04, prostate_test =
6.684431e-04

102

103

104

105

At time 10:
No. tumour cells 20, prostate cells 2102, blood cells 101513
PSA_top_level 1.381568e-10
--

Time 11
Diffusion PSA_top, with tumour
Diffusion converged, nt = 6, ext_test = 5.494959e-04, prostate_test =
5.405287e-04

106

107

108

109

At time 11:
No. tumour cells 26, prostate cells 2102, blood cells 101507
PSA_top_level 1.778203e-10
--

Time 12
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.455097e-04, prostate_test =
7.808609e-04

110

111

112

113

At time 12:
No. tumour cells 33, prostate cells 2102, blood cells 101500
PSA_top_level 1.890371e-10
--

Time 13
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.399391e-04, prostate_test =
6.207370e-04

114

115

116

117

At time 13:
No. tumour cells 42, prostate cells 2102, blood cells 101491
PSA_top_level 2.215085e-10
--

Time 14
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 5.999320e-04, prostate_test =
4.917555e-04

118

119

120

121

At time 14:
No. tumour cells 53, prostate cells 2102, blood cells 101480
PSA_top_level 2.761012e-10
--

Time 15
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 8.037903e-04, prostate_test =
3.916501e-04

122

123

124

125

At time 15:
No. tumour cells 66, prostate cells 2102, blood cells 101467
PSA_top_level 3.861554e-10
--

Time 16
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 5.718902e-04, prostate_test =
3.153793e-04

126

127

128

129

At time 16:
No. tumour cells 82, prostate cells 2102, blood cells 101451
PSA_top_level 4.765947e-10
--

Time 17
Diffusion PSA_top, with tumour
Diffusion converged, nt = 4, ext_test = 7.495524e-04, prostate_test =
4.720078e-04

130

131

132

133

At time 17:
No. tumour cells 102, prostate cells 2102, blood cells 101431
PSA_top_level 5.248792e-10
--

Time 18
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.819538e-04, prostate_test =
2.066113e-04

134

135

136

137

At time 18:
No. tumour cells 126, prostate cells 2102, blood cells 101407
PSA_top_level 6.131118e-10
--

Time 19
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.452989e-04, prostate_test =
2.149000e-04

138

139

140

141

At time 19:
No. tumour cells 155, prostate cells 2102, blood cells 101378
PSA_top_level 7.166570e-10
--

Time 20
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.815732e-04, prostate_test =
2.123355e-04

142

143

144

145

At time 20:
No. tumour cells 191, prostate cells 2102, blood cells 101342
PSA_top_level 8.596791e-10
--

Time 21
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.464936e-04, prostate_test =
1.636775e-04

146

147

148

149

At time 21:
No. tumour cells 235, prostate cells 2102, blood cells 101298
PSA_top_level 1.021112e-09
--

Time 22
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.539279e-04, prostate_test =
1.624184e-04

150

151

152

153

At time 22:
No. tumour cells 289, prostate cells 2102, blood cells 101244
PSA_top_level 1.218494e-09
--

Time 23
Diffusion PSA_top, with tumour
Diffusion converged, nt = 4, ext_test = 7.593402e-04, prostate_test =
3.003397e-04

154

155

156

157

At time 23:
No. tumour cells 355, prostate cells 2102, blood cells 101178
PSA_top_level 1.372078e-09
--

Time 24
Diffusion PSA_top, with tumour
Diffusion converged, nt = 5, ext_test = 3.603722e-04, prostate_test =
2.131324e-04

158

159

160

161

At time 24:
No. tumour cells 436, prostate cells 2102, blood cells 101097
PSA_top_level 1.656060e-09

162

163

Date and time 2026-01-10 14:41:19.422540
Time since last check is 0:03:04.483593

1.8 End of model run
Return to ToC: »

[17]: #
fig = plt.figure(figsize = (6, 9))
#

164

ax = fig.add_subplot(3, 1, 1)
ax.set_title("Cells with time")
ax.set_xlabel("Time")
ax.set_ylabel("No. cells")
ax.plot(times, blood_time, marker = 'o', linestyle = ':', color = 'r', label =␣

↪"Blood")
ax.plot(times, tumour_time, marker = 'o', linestyle = ':', color = 'b', label =␣

↪"Tumour")
ax.plot(times, prostate_time, marker = 'o', linestyle = ':', color = 'c', label␣

↪= "Prostate")
ax.set_yscale('log')
ax.grid(color = 'g')
ax.legend()
#
ax = fig.add_subplot(3, 1, 2)
ax.set_title("Tumour cells and interface area with time")
ax.set_xlabel("Time")
ax.set_ylabel("No. cells/cell faces")
ax.plot(times, tumour_time, marker = 'o', linestyle = ':', color = 'r', label =␣

↪"Tumour cells")
ax.plot(times, area_time, marker = 'o', linestyle = ':', color = 'b', label =␣

↪"Interface area")
ax.plot(times, face_number, marker = 'o', linestyle = ':', color = 'c',

label = "Face number")
ax.set_yscale('log')
ax.grid(color = 'g')
ax.legend()
#
ax = fig.add_subplot(3, 1, 3)
ax.set_title("PSA level with time")
ax.set_xlabel("Time")
ax.set_ylabel("PSA")
if double:

ax.plot(times, PSA_top_time, marker = 'v', linestyle = '', color = 'k')
ax.plot(times, PSA_bot_time, marker = '^', linestyle = '', color = 'k')
ax.fill_between(times, PSA_bot_time, PSA_top_time, color = 'k', alpha = 0.3)
if triple:

ax.plot(times, PSA_mid_time, marker = '+', linestyle = '-', color = 'k')
else:

ax.plot(times, PSA_top_time, marker = 'o', linestyle = ':', color = 'k')
ax.grid(color = 'g')
#
plt.tight_layout()
plt.show()
#
PSA_cells_time = tumour_time + prostate_time
#

165

plot_log_here = True
#
fig = plt.figure(figsize = (6, 6))
#
ax = fig.add_subplot(2, 1, 1)
ax.set_title("PSA level as function of tumour cell number")
ax.set_xlabel("No. cells")
ax.set_ylabel("PSA")
if double:

ax.scatter(tumour_time, PSA_top_time, marker = 'v', c = btcell_color)
ax.scatter(tumour_time, PSA_bot_time, marker = '^', c = btcell_color)
ax.fill_between(tumour_time, PSA_bot_time, PSA_top_time, color = 'c', alpha␣

↪= 0.3)
if triple:

ax.scatter(tumour_time, PSA_mid_time, marker = '+', c = btcell_color)
else:

ax.scatter(tumour_time, PSA_top_time, marker = 'o', c = btcell_color)
ax.plot(tumour_time, PSA_top_time, marker = '', linestyle = ':', color =␣

↪'c')
ax.grid(color = 'g')
if plot_log_here and len(tumour_time > 0):

ax.set_xscale('log')
ax.set_yscale('log')

#
ax = fig.add_subplot(2, 1, 2)
ax.set_title("PSA level as function of interface area")
ax.set_xlabel("Area")
ax.set_ylabel("PSA")
if double:

ax.scatter(area_time, PSA_top_time, marker = 'v', c = btcell_color)
ax.scatter(area_time, PSA_bot_time, marker = '^', c = btcell_color)
ax.fill_between(area_time, PSA_bot_time, PSA_top_time, color = 'c', alpha =␣

↪0.3)
if triple:

ax.scatter(area_time, PSA_mid_time, marker = '+', c = btcell_color)
else:

ax.scatter(area_time, PSA_top_time, marker = 'o', c = btcell_color)
ax.plot(area_time, PSA_top_time, marker = '', linestyle = ':', color = 'c')

ax.grid(color = 'g')
if plot_log_here:

ax.set_xscale('log')
ax.set_yscale('log')

#
plt.tight_layout()
plt.show()

166

167

1.9 Code cell template
Return to ToC: »

[18]: import datetime
now = datetime.datetime.now()
print("Date and time",str(now))
#
#
then = now
now = datetime.datetime.now()

168

print("\nDate and time",str(now))
print("Time since last check is",str(now - then))

Date and time 2026-01-10 14:36:46.380883

Date and time 2026-01-10 14:36:46.381010
Time since last check is 0:00:00.000127

169

	Numerical calculation of PSA levels
	Table of contents
	Notes
	Introduction
	Cell type codes
	Increase tumour size - making duplications

	Load libraries and initialise random number generator
	Functions
	List body data
	Plot body data
	Set initial PSA levels
	Set PSA level in borders
	Find exterior cells
	Find area of blood/tumour interface
	Diffuse, create and decay PSA
	Plot time development of PSA levels
	Choose position for duplicate cell
	Show all changes in body
	Find new cell positions
	Shift cells to new positions
	Update PSA array
	Reset body steering values

	Overview of running of model
	Run complete model
	End of model run
	Code cell template

