
Laplace’s equation in spherical polar coordinates

■ In this lecture we will:

♦ See how Legendre polynomials 

arise in the solution of Laplace’s 

equation in spherical polar 

coordinates.

♦ Introduce spherical harmonics.

♦ See how spherical harmonics are 

used in the quantum mechanical 

description of atoms.

■ A comprehension question for this 

lecture:

♦ Prove that the function

is a solution of the equation 
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Laplace’s equation in spherical polar coordinates

■ In spherical polar coordinates, the gradient is:

■ The divergence is:

■ Putting them together, we get the Laplacian in spherical polar coordinates:

■ Setting this expression equal to zero gives us Laplace’s equation in spherical 

polar coordinates:

■ Lots of physical potentials are described by this equation and many of them 

depend on r and q, but not on f.

■ Look for solutions to Laplace’s equation that are independent of f.

■ Also assume we can solve by separating variables, i.e. that 
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Solving Laplace’s equation by separating variables

■ We can then rewrite the equation as:

■ The only way that a function of r and a 

function of q can be equal for all values 

of r and q is if they are both equal to the 

same constant.

■ Write that constant as              (We will 

see later why this form is chosen!)

■ We then have:

■ Two solutions of this equation are:

■ Prove that            is a solution of
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Solving Laplace’s equation by separating variables

■ Also:                                                            Change variables by setting

■ This gives:

■ We then have: 

■ Rearranging:

■ Differentiating w.r.t. w gives:

■ This is Legendre’s equation (with l instead of n)! 

■ The solutions of this equation are the Legendre polynomials

■ The solutions of the Laplace equation (without f dependence) are therefore:  
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Spherical harmonics

■ If we allow f dependence, the Laplace equation can still be solved by separating 

variables; the angular part of the solution is given by the spherical harmonics:

■ The picture shows the 

first few real spherical

harmonics 

■ The distance from the

origin shows the value of

direction, with blue being

positive and yellow

negative.  
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Schrödinger’s equation for an H-like atom

■ Schrödinger’s equation describing an 

electron moving around a nucleus is:

■ The solutions are of the form:

■ The energy                , i.e. it can only 

take on discrete values.

■ The value of l is limited by

■ The magnitude of the orbital angular 

momentum of the electron is given 

by 

■ The z component of the orbital 

angular momentum is given by 

■ The magnetic quantum number m is 

restricted to the range 
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Schrödinger’s equation for an H-like atom

■ The value of n, is called the principal 

quantum number.

■ If an electron shifts from an orbit 

with            to one with           , it 

emits (or absorbs) an energy:

■ As                        , this means energy 

is emitted from atoms at particular 

frequencies/wavelengths.

■ As the nuclear charge of (and the 

number of electrons in) an atom 

influence the energy levels, this gives 

rise to distinctive spectra which allow 

atoms to be identified. 

■ Note that, in this solution, the energy 

is independent of l and m.

■ The independence of the energy on 

the magnitude of the angular 

momentum vanishes when relativistic 

effects are considered. 

■ These effects introduce fine structure

to the spectra.

■ A further l dependence is also 

introduced if the atom is placed in a 

magnetic field, the Zeeman effect.

■ This latter effect is used in nuclear 

magnetic resonance spectroscopy 

(NMR) and magnetic resonance 

imaging (MRI).
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