Laplace's equation in spherical polar coordinates

■ In this lecture we will:

- See how Legendre polynomials arise in the solution of Laplace's equation in spherical polar coordinates.
- Introduce spherical harmonics.
- See how spherical harmonics are used in the quantum mechanical description of atoms.
- A comprehension question for this lecture:
- Prove that the function $G=r^{-l-1}$ is a solution of the equation

$$
\frac{1}{G} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)=l(l+1)
$$

Laplace's equation in spherical polar coordinates

■ In spherical polar coordinates, the gradient is: $\nabla V=\frac{\partial V}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi}$.

- The divergence is: $\nabla \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(A_{\phi}\right)$.

■ Putting them together, we get the Laplacian in spherical polar coordinates:

$$
\nabla \cdot \nabla V=\nabla^{2} V=\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}\right]
$$

■ Setting this expression equal to zero gives us Laplace's equation in spherical polar coordinates:
$\nabla \cdot \nabla V=\nabla^{2} V=0$.

- Lots of physical potentials are described by this equation and many of them depend on r and θ, but not on ϕ.
- Look for solutions to Laplace's equation that are independent of ϕ.
- Also assume we can solve by separating variables, i.e. that $V(r, \theta)=G(r) H(\theta)$.

Solving Laplace's equation by separating variables

- We can then rewrite the equation as:

$$
\frac{1}{G} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)=-\frac{1}{H \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d H}{d \theta}\right)
$$

- The only way that a function of r and a function of θ can be equal for all values of r and θ is if they are both equal to the same constant.
- Write that constant as $l(l+1)$. (We will see later why this form is chosen!)
■ We then have:
$\frac{1}{G} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)=l(l+1)$.
- Two solutions of this equation are:
$G=r^{l}$ and $G=r^{-l-1}$.
- Prove that $G=r^{l}$ is a solution of

$$
\frac{1}{G} \frac{d}{d r}\left(r^{2} \frac{d G}{d r}\right)=l(l+1)
$$

Solving Laplace's equation by separating variables

- Also: $-\frac{1}{H \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta} H\right)=l(l+1)$. Change variables by setting $w=\cos \theta$.
- This gives: $\frac{d}{d \theta}=\frac{d w}{d \theta} \frac{d}{d w}=-\sin \theta \frac{d}{d w}$ and $-\frac{1}{\sin \theta} \frac{d}{d \theta}=\frac{d}{d w}$.
- We then have: $-\frac{1}{H} \frac{d}{d w}\left(\sin ^{2} \theta \frac{d H}{d w}\right)=l(l+1)$ or $\frac{d}{d w}\left(\sin ^{2} \theta \frac{d H}{d w}\right)=-l(l+1) H$
- Rearranging: $\frac{d}{d w}\left(\sin ^{2} \theta \frac{d H}{d w}\right)+l(l+1) H=0 \Rightarrow \frac{d}{d w}\left(\left(1-w^{2}\right) \frac{d H}{d w}\right)+l(l+1) H=0$.
- Differentiating w.r.t. w gives: $\left(1-w^{2}\right) \frac{d^{2} H}{d w^{2}}-2 w \frac{d H}{d w}+l(l+1) H=0$.
- This is Legendre's equation (with l instead of n)!
- The solutions of this equation are the Legendre polynomials $P_{l}(w)=P_{l}(\cos \theta)$.
- The solutions of the Laplace equation (without ϕ dependence) are therefore:
$G(r) H(\theta)=r^{l} P_{l}(\cos \theta)$ and $G(r) H(\theta)=r^{-l-1} P_{l}(\cos \theta)$.

Spherical harmonics

■ If we allow ϕ dependence, the Laplace equation can still be solved by separating variables; the angular part of the solution is given by the spherical harmonics:

$$
Y_{l}^{m}(\theta, \phi) \propto \sin ^{m} \theta \frac{d^{m}}{d(\cos \theta)^{m}} P_{l}(\cos \theta) \exp [i m \phi], \text { with }-l \leq m \leq l .
$$

- The picture shows the first few real spherical harmonics ($m=0 \ldots 3$).
- The distance from the origin shows the value of $Y_{l}^{m}(\theta, \phi)$ in the (θ, ϕ) direction, with blue being positive and yellow negative.

Schrödinger's equation for an H -like atom

- Schrödinger's equation describing an electron moving around a nucleus is:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(r) \psi=E \psi
$$

- The solutions are of the form:

$$
\psi_{n l m}(r, \theta, \psi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)
$$

■ The energy $E_{n} \propto 1 / n^{2}$, i.e. it can only take on discrete values.

- The value of l is limited by $l \leq n-1$.
- The magnitude of the orbital angular momentum of the electron is given by $L=\sqrt{l(l+1)} \hbar$.
- The z component of the orbital angular momentum is given by $L_{z}=m \hbar$.
- The magnetic quantum number m is restricted to the range $-l \leq m \leq l$.

Schrödinger's equation for an H-like atom

- The value of n, is called the principal quantum number.
- If an electron shifts from an orbit with $n=n_{1}$ to one with $n=n_{2}$, it emits (or absorbs) an energy:

$$
E \propto \frac{1}{n_{2}}-\frac{1}{n_{1}} .
$$

- As $E=h f=h c / \lambda$, this means energy is emitted from atoms at particular frequencies/wavelengths.
- As the nuclear charge of (and the number of electrons in) an atom influence the energy levels, this gives rise to distinctive spectra which allow atoms to be identified.
- Note that, in this solution, the energy is independent of l and m.
- The independence of the energy on the magnitude of the angular momentum vanishes when relativistic effects are considered.
- These effects introduce fine structure to the spectra.
- A further l dependence is also introduced if the atom is placed in a magnetic field, the Zeeman effect.
- This latter effect is used in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI).

