Partial differential equations

- In this lecture we will:
- Introduce a classification scheme for partial differential equations (PDEs).
- Revisit the superposition theorem.
- Derive the partial differential equation that describes the wave motion of an elastic string.
- Solve the PDE by separating variables.
- A comprehension question for this lecture:
- What is the order of the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} ?
$$

- Is this equation linear?
- Is it homogeneous?

Classifying PDEs

Principle of superposition

- PDE classification is similar to that for ordinary differential equations (ODEs).
- The order is given by the highest derivative, e.g. the 1D heat equation

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

is second order.

- The equation is linear if the dependent variable (u) and its derivatives appear only to the first power (the heat equation is linear).
- The equation is homogeneous if every term contains the dependent variable or one of its derivatives (the heat equation is homogeneous).
- Another similarity to ODEs!
- If u_{1} and u_{2} are solutions of a linear PDE, then:

$$
u=c_{1} u_{1}+c_{2} u_{2},
$$

where c_{1} and c_{2} are constants, is also a solution of the PDE.

- The proof of this is similar to the proof for the ODE case...

■ ...and is left as an exercise for the student!

Equation of motion of string

- Want to work out how string behaves, assume:
- Homogeneous, with mass per unit length ρ.
- Tension much larger than gravity.
- Small motions (i.e. α and β small) in one plane:

- No motion in horizontal direction:

$$
T_{1} \cos \alpha=T_{2} \cos \beta \approx T
$$

- Vertical motion, Newton's second law gives:

$$
T_{2} \sin \beta-T_{1} \sin \alpha=\rho \delta x \frac{\partial^{2} u}{\partial t^{2}}
$$

- Using first equation:

$$
\begin{aligned}
\frac{T_{2} \sin \beta}{T_{2} \cos \beta}-\frac{T_{1} \sin \alpha}{T_{1} \cos \alpha} & =\frac{\rho}{T} \delta x \frac{\partial^{2} u}{\partial t^{2}} \\
\frac{\tan \beta-\tan \alpha}{\delta x} & =\frac{\rho}{T} \frac{\partial^{2} u}{\partial t^{2}}
\end{aligned}
$$

- Now:

$$
\tan \alpha=\left.\frac{\partial u}{\partial x}\right|_{x} \text { and } \tan \beta=\left.\frac{\partial u}{\partial x}\right|_{x+\delta x}
$$

Equation of motion of string

- So we have:
$\frac{\tan \beta-\tan \alpha}{\delta x}=\frac{1}{\delta x}\left(\left.\frac{\partial u}{\partial x}\right|_{x+\delta x}-\left.\frac{\partial u}{\partial x}\right|_{x}\right)$,
■ and hence:

$$
\frac{1}{\delta x}\left(\left.\frac{\partial u}{\partial x}\right|_{x+\delta x}-\left.\frac{\partial u}{\partial x}\right|_{x}\right)=\frac{\rho}{T} \frac{\partial^{2} u}{\partial t^{2}} .
$$

- Letting $\mathrm{dx} \rightarrow 0$ gives:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\rho}{T} \frac{\partial^{2} u}{\partial t^{2}} .
$$

- This is the 1 D wave equation, generally written:

$$
\frac{\partial^{2} u}{\partial x^{2}}=c^{2} \frac{\partial^{2} u}{\partial t^{2}}
$$

- (Use c^{2} to indicate constant positive!)
- Solution of equation is function $u(x, t)$.
- Have boundary conditions $u(0, t)=0$ and $u(l, t)=0$ (string fixed at ends).
- At $t=0$, initial deflection is $f(x)$ and initial velocity is $g(x)$.
- This means:

$$
u(x, 0)=f(x) \text { and } \frac{\partial u(x, 0)}{\partial t}=g(x)
$$

- Need solution that satisfies these conditions!
■ Three steps:
- Separate variables, get 2 ODEs.
- Solve ODEs satisfying boundary conditions.
- Put these solutions together to solve PDE.

Solving equation of motion of string - step one

- Assume can write solution in form:

$$
u(x, t)=F(x) G(t)
$$

- Differentiating gives:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=F^{\prime} G, \frac{\partial^{2} u}{\partial x^{2}}=F^{\prime \prime} G \text { and } \\
& \frac{\partial u}{\partial t}=F \dot{G}, \frac{\partial^{2} u}{\partial t^{2}}=F \ddot{G}
\end{aligned}
$$

- Our wave equation becomes:

$$
F^{\prime \prime} G=c^{2} F \ddot{G}
$$

- Rearranging:

$$
\frac{F^{\prime \prime}}{F}=\frac{c^{2} \ddot{G}}{G}
$$

- LHS depends only on x, RHS on t, so must both be equal to a constant, k.

■ We have:

$$
\frac{F^{\prime \prime}}{F}=k, \frac{c^{2} \ddot{G}}{G}=k
$$

- This gives:

$$
F^{\prime \prime}-k F=0
$$

- and

$$
\ddot{G}-c^{2} k G=0 .
$$

- These are two ODEs that we can solve using the techniques we have already developed...
- ...while ensuring that the boundary conditions are satisfied, i.e. we need:

$$
F(0)=0 \text { and } F(l)=0 .
$$

Solving equation of motion of string - step two

- First look at positive $k=\mu^{2}$:

$$
F^{\prime \prime}-\mu^{2} F=0
$$

- Hence:

$$
F=A e^{\mu x}+B e^{-\mu x}
$$

- But $F(0)=0$ and $F(l)=0$ force $A=0$ and $B=0$, so $F=0$: not useful!
■ Try negative $k=-p^{2}$:

$$
F^{\prime \prime}+p^{2} F=0
$$

- This gives:

$$
F=A \cos p x+B \sin p x
$$

- The boundary conditions then give:

$$
F(0)=A=0 \text { and } F(l)=B \sin p l=0 .
$$

- This means:

$$
p l=n \pi \text { or } p=\frac{n \pi}{l}
$$

- Setting $B=1$, we have an infinite number of solutions of the form:

$$
F_{n}(x)=\sin \frac{n \pi}{l} x
$$

- The equation for G with $k=-(n \pi / l)^{2}$ is:

$$
\ddot{G}+c^{2}\left(\frac{n \pi}{l}\right)^{2} G=0
$$

- Writing $\lambda_{n}=c n \pi / l$, we get:

$$
\ddot{G}+\lambda_{n}^{2} G=0
$$

■ This has solutions:

$$
G_{n}(t)=A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t .
$$

- Hence a solution of the PDE is:

$$
u_{n}(x, t)=\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) \sin \frac{n \pi}{l} x .
$$

Solving equation of motion of string - step three

- Some jargon:
- The $u_{\mathrm{n}}(x, t)$ are called eigenfunctions and the λ_{n} eigenvalues (or characteristic functions and values, respectively).
- The eigenvalue set λ_{1}, λ_{2}, $\lambda_{3} \ldots$ is called the spectrum.
- The motion with of the string with wavelength λ_{n} is called the $n^{\text {th }}$ normal mode.
- In order to satisfy the initial conditions (the shape and velocity of string at $t=0$), we need to exploit the superposition theorem...

■ ... write the solution in the form:

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty}\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) \sin \frac{n \pi}{l} x .
\end{aligned}
$$

- Then $u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi}{l} x=f(x)$ and

$$
\begin{aligned}
\left.\frac{\partial u}{\partial t}\right|_{t=0} & =\left.\sum_{n=1}^{\infty}\left(-A_{n} \lambda_{n} \sin \lambda_{n} t+B_{n} \lambda_{n} \cos \lambda_{n} t\right) \sin \frac{n \pi}{l} x\right|_{t=0} \\
& =\sum_{n=1}^{\infty} B_{n} \lambda_{n} \sin \frac{n \pi}{l} x=g(x) .
\end{aligned}
$$

- Choosing the A_{n} to be the Fourier coefficients for $f(x)$ and the B_{n} to be those for $g(x)$ ensures that the initial conditions are satisfied.

An example - initial deflection triangle

- Find solution to 1D wave equation with initial conditions $g(x)=0$ and

$$
f(x)=\left\{\begin{array}{l}
\frac{2 k}{l} x \text { if } 0<x<\frac{l}{2}, \\
\frac{2 l}{l}(l-x) \text { if } \frac{l}{2}<x<l .
\end{array}\right.
$$

- $g(x)=0$ implies $B_{n}=0$ for all n.
- Fourier analysis of $f(x)$ gives:

$f(x)=\frac{8 k}{\pi^{2}}\left(\frac{1}{l^{2}} \sin \frac{\pi}{l} x-\frac{1}{3^{2}} \sin \frac{3 \pi}{l} x+\ldots\right)$
- Hence:

$$
\begin{aligned}
u(x, t)= & \frac{8 k}{\pi^{2}}\left(\frac{1}{l^{2}} \sin \frac{\pi}{l} x \cos \frac{\pi c}{l} t-\right. \\
& \left.\frac{1}{3^{2}} \sin \frac{3 \pi}{l} x \cos \frac{3 \pi c}{l} t+\ldots\right)
\end{aligned}
$$

