
Convolution and convolution theorem

■ In this lecture we will:

♦ Motivate introduction of 

convolution by looking at the 

effect of an RC circuit on a 

signal.

♦ Look at another example of 

convolution.

♦ Introduce the (Fourier) 

convolution theorem.

■ A comprehension question for this 

lecture:

♦ Calculate the convolution of the 

functions:

•

•

1

f (t) cos t.= 

 g(t) exp t .= −



Effect of RC circuit on signal

■ Consider low pass filter consisting of 

resistance R and capacitance C.

■ Current through resistor

■ Current through capacitor

■ These must be same, so: 

■ Rewriting:

■ Solve using integrating factor:

■ Multiplying through by the IF:
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Effect of RC circuit on signal – convolution

■ Introducing a dummy variable and 

limits for the integration:

■ The result of sending a signal Vin(t) 

through the filter with response 

function                              is given 

by the convolution of Vin and r:

■ You will also see this written:

■ Determine output if

■ We will set                         to simplify 

things!

■ Integrate by parts once… 
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Effect of RC circuit on signal – convolution

■

■ Integrate by parts again:

■ Hence:
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Effect of RC circuit on signal – convolution 

■ Look at response of circuit at low and high frequencies:

■ See amplitude change, but also in Vin and Vout in phase for  << 1, Vout lags 

behind Vin by p/4 for  = 1 and by p/2 for  >> 1.
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Convolution example

■ Look at functions:

■ And their convolution:

■ For x = 0.5, 1, 1.5, 2, 4, 4.5, 5, 5.5, 

we have (L to R, top to bottom):  

■

1 if 1 x 2
f (x)

0 otherwise.

1 if 0 x 3
g(x)

0 otherwise.
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Convolution example

■ The value of                  at a given x is 

the overlapping area of f and g  

■ Putting the graphs on the previous 

slide together,                 is:

■ If          is the Fourier Transform of f 

and          that of g, then:

■ Using the inverse Fourier Transform, 

we can write:
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( )1f g (f ) (g) .− =F F F

Convolution theorem
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