Convolution and convolution theorem

- In this lecture we will:
- Motivate introduction of convolution by looking at the effect of an RC circuit on a signal.
- Look at another example of convolution.
- Introduce the (Fourier) convolution theorem.
- A comprehension question for this lecture:
- Calculate the convolution of the functions:
- $\mathrm{f}(\mathrm{t})=\cos \omega \mathrm{t}$.
- $g(t)=\exp [-t]$.

Effect of RC circuit on signal

- Consider low pass filter consisting of resistance R and capacitance C .

- Current through resistor $I_{R}=\frac{V_{\text {in }}-V_{\text {out }}}{R}$.
- Current through capacitor $\mathrm{I}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dV}_{\text {out }}}{\mathrm{dt}}$.
- These must be same, so:

$$
\frac{\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}}{\mathrm{R}}=\mathrm{C} \frac{\mathrm{~d} \mathrm{~V}_{\text {out }}}{\mathrm{dt}} .
$$

- Rewriting: $\frac{\mathrm{dV}_{\text {out }}}{\mathrm{dt}}+\frac{1}{\mathrm{RC}} \mathrm{V}_{\text {out }}=\frac{\mathrm{V}_{\text {in }}}{\mathrm{RC}}$.
- Solve using integrating factor:

$$
\mathrm{IF}=\exp \left[\int \frac{1}{\mathrm{RC}} \mathrm{dt}\right]=\exp \left[\frac{\mathrm{t}}{\mathrm{RC}}\right] .
$$

- Multiplying through by the IF:

$$
\frac{d V_{\text {out }}}{d t} e^{t / R C}+\frac{1}{R C} V_{\text {out }} e^{t / R C}=\frac{V_{\text {in }}}{R C} e^{t / R C},
$$

so $\frac{d}{d t}\left(V_{\text {out }} e^{t / R C}\right)=\frac{V_{\text {in }}}{R C} e^{t / R C}$
and $V_{\text {out }}(t) e^{t / R C}=\frac{1}{R C} \int V_{\text {in }}(t) e^{t / R C} d t$
or $V_{\text {out }}(t)=\frac{e^{-t / R C}}{R C} \int V_{\text {in }}(t) e^{t / R C} d t$.

Effect of RC circuit on signal - convolution

- Introducing a dummy variable and limits for the integration:

$$
\begin{aligned}
\mathrm{V}_{\text {out }}(\mathrm{t}) & =\frac{\mathrm{e}^{-t / R C}}{\mathrm{RC}} \int_{-\infty}^{\mathrm{t}} \mathrm{~V}_{\text {in }}(\tau) \mathrm{e}^{\tau / \mathrm{RC}} \mathrm{~d} \tau \\
& =\frac{1}{\mathrm{RC}} \int_{-\infty}^{\mathrm{t}} \mathrm{~V}_{\text {in }}(\tau) \mathrm{e}^{-(\mathrm{t}-\tau) / \mathrm{RC}} \mathrm{~d} \tau .
\end{aligned}
$$

- The result of sending a signal $\mathrm{V}_{\text {in }}(\mathrm{t})$ through the filter with response function $r(t)=e^{-t / R C} / R C$ is given by the convolution of V_{in} and r :

$$
\begin{aligned}
\mathrm{V}_{\text {out }}(\mathrm{t}) & =\left(\mathrm{V}_{\text {in }} * \mathrm{r}\right)(\mathrm{t}) \\
& =\int_{-\infty}^{\mathrm{t}} \mathrm{~V}_{\text {in }}(\tau) \mathrm{r}(\mathrm{t}-\tau) \mathrm{d} \tau \\
& =\frac{1}{\mathrm{RC}} \int_{-\infty}^{\mathrm{t}} \mathrm{~V}_{\text {in }}(\tau) \mathrm{e}^{-(\mathrm{t}-\tau) / \mathrm{RC}} \mathrm{~d} \tau .
\end{aligned}
$$

■ You will also see this written:

$$
\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{V}_{\text {in }}(\mathrm{t}) * \mathrm{r}(\mathrm{t}) .
$$

■ Determine output if $\mathrm{V}_{\text {in }}(\mathrm{t})=\mathrm{V}_{0} \sin (\omega \mathrm{t})$.

- We will set $\mathrm{V}_{0}=\mathrm{R}=\mathrm{C}=1$ to simplify things!

$$
\mathrm{V}_{\text {out }}(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \sin \omega \tau \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d} \tau
$$

- Integrate by parts once...

$$
\begin{aligned}
\mathrm{V}_{\text {out }}(\mathrm{t}) & =-\int_{-\infty}^{\mathrm{t}} \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d}\left(\frac{\cos \omega \tau}{\omega}\right) \\
& =-\left.\frac{\cos \omega \tau}{\omega} \mathrm{e}^{-(\mathrm{t}-\tau)}\right|_{-\infty} ^{\mathrm{t}} \\
& +\int_{-\infty}^{\mathrm{t}} \frac{\cos \tau}{\omega} \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d} \tau
\end{aligned}
$$

Effect of RC circuit on signal - convolution

$\square \mathrm{V}_{\text {out }}=-\left.\frac{\cos \omega \tau}{\omega} \mathrm{e}^{-(\mathrm{t}-\tau)}\right|_{-\infty} ^{\mathrm{t}}+\int_{-\infty}^{\mathrm{t}} \frac{\cos \omega \tau}{\omega} \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d} \tau=-\frac{\cos \omega \tau}{\omega}+\int_{-\infty}^{\mathrm{t}} \frac{\cos \omega \tau}{\omega} \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d} \tau$

- Integrate by parts again:

$$
V_{\text {out }}=-\frac{\cos \omega t}{\omega}+\int_{-\infty}^{t} e^{-(t-\tau)} d\left(\frac{\sin \omega \tau}{\omega^{2}}\right)=-\frac{\cos \omega t}{\omega}+\left.\frac{\sin \omega \tau}{\omega^{2}} e^{-(t-\tau)}\right|_{-\infty} ^{t}-\int_{-\infty}^{t} \frac{\sin \omega \tau}{\omega^{2}} e^{-(t-\tau)} d \tau
$$

$$
\begin{aligned}
& =-\frac{\cos \omega \mathrm{t}}{\omega}+\frac{\sin \omega \mathrm{t}}{\omega^{2}}-\frac{1}{\omega^{2}} \int_{-\infty}^{\mathrm{t}} \sin \omega t \mathrm{e}^{-(\mathrm{t}-\tau)} \mathrm{d} \tau \\
& =-\frac{\cos \omega \mathrm{t}}{\omega}+\frac{\sin \omega \mathrm{t}}{\omega^{2}}-\frac{\mathrm{V}_{\text {out }}}{\omega^{2}}
\end{aligned}
$$

- Hence:

$$
\begin{aligned}
& \left(1+\frac{1}{\omega^{2}}\right) \mathrm{V}_{\mathrm{out}}=\frac{\sin \omega \mathrm{t}}{\omega^{2}}-\frac{\cos \omega t}{\omega} \\
& \mathrm{~V}_{\mathrm{out}}=\frac{\sin \omega \mathrm{t}-\omega \cos \omega \mathrm{t}}{1+\omega^{2}}
\end{aligned}
$$

Effect of RC circuit on signal - convolution

- Look at response of circuit at low and high frequencies:

- See amplitude change, but also in $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ in phase for $\omega \ll 1, \mathrm{~V}_{\text {out }}$ lags behind $V_{\text {in }}$ by $\pi / 4$ for $\omega=1$ and by $\pi / 2$ for $\omega \gg 1$.

Convolution example

- Look at functions:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
1 \text { if } 1<\mathrm{x}<2 \\
0 \text { otherwise }
\end{array}\right. \\
& \mathrm{g}(\mathrm{x})=\left\{\begin{array}{l}
1 \text { if } 0<\mathrm{x}<3 \\
0 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

- And their convolution:
$(f * g)(x)=\int_{-\infty}^{\infty} f(\xi) g(x-\xi) d \xi$.
- For $\mathrm{x}=0.5,1,1.5,2,4,4.5,5,5.5$, we have (L to R , top to bottom):

Convolution example

Convolution theorem

- The value of $(\mathrm{f} * \mathrm{~g})(\mathrm{x})$ at a given x is the overlapping area of f and g with $\mathrm{g}(\xi) \rightarrow \mathrm{g}(-\xi)$.
- Putting the graphs on the previous slide together, $(\mathrm{f} * \mathrm{~g})(\mathrm{x})$ is:

- If $F(\mathrm{f})$ is the Fourier Transform of f and $F(\mathrm{~g})$ that of g , then:

$$
F(\mathrm{f} * \mathrm{~g})=F(\mathrm{f}) F(\mathrm{~g})
$$

■ Using the inverse Fourier Transform, we can write:

$$
\mathrm{f} * \mathrm{~g}=F^{-1}(F(\mathrm{f}) F(\mathrm{~g}))
$$

