Convolution and convolution theorem

- In this lecture we will:
 - Motivate introduction of convolution by looking at the effect of an RC circuit on a signal.
 - Look at another example of convolution.
 - Introduce the (Fourier) convolution theorem.

- A comprehension question for this lecture:
 - Calculate the convolution of the functions:

1

- $f(t) = \cos \omega t$.
- $g(t) = \exp[-t]$.

Effect of RC circuit on signal

 Consider low pass filter consisting of resistance R and capacitance C.

Rewriting:
$$\frac{dV_{out}}{dt} + \frac{1}{RC}V_{out} = \frac{V_{in}}{RC}$$

- Solve using integrating factor: $IF = \exp\left[\int \frac{1}{RC} dt\right] = \exp\left[\frac{t}{RC}\right].$
- Multiplying through by the IF: $\frac{dV_{out}}{dt}e^{t/RC} + \frac{1}{RC}V_{out}e^{t/RC} = \frac{V_{in}}{RC}e^{t/RC},$ so $\frac{d}{dt}(V_{out}e^{t/RC}) = \frac{V_{in}}{RC}e^{t/RC}$ and $V_{out}(t)e^{t/RC} = \frac{1}{RC}\int V_{in}(t)e^{t/RC} dt$ or $V_{out}(t) = \frac{e^{-t/RC}}{RC}\int V_{in}(t)e^{t/RC} dt$.

Effect of RC circuit on signal – convolution

Introducing a dummy variable and limits for the integration:

$$V_{\text{out}}(t) = \frac{e^{-t/RC}}{RC} \int_{-\infty}^{t} V_{\text{in}}(\tau) e^{\tau/RC} d\tau$$
$$= \frac{1}{RC} \int_{-\infty}^{t} V_{\text{in}}(\tau) e^{-(t-\tau)/RC} d\tau.$$

The result of sending a signal $V_{in}(t)$ through the filter with response function $r(t) = e^{-t/RC} / RC$ is given by the *convolution* of V_{in} and r: $V_{out}(t) = (V_{in} * r)(t)$

$$= \int_{-\infty} V_{in}(\tau) r(t-\tau) d\tau$$
$$= \frac{1}{RC} \int_{-\infty}^{t} V_{in}(\tau) e^{-(t-\tau)/RC} d\tau.$$

- You will also see this written: $V_{out}(t) = V_{in}(t) * r(t).$
- Determine output if $V_{in}(t) = V_0 \sin(\omega t)$.
- We will set $V_0 = R = C = 1$ to simplify things!

$$V_{out}(t) = \int_{-\infty}^{t} \sin \omega \tau e^{-(t-\tau)} d\tau$$

Integrate by parts once...

$$V_{out}(t) = -\int_{-\infty}^{t} e^{-(t-\tau)} d\left(\frac{\cos \omega \tau}{\omega}\right)$$

$$= -\frac{\cos \omega \tau}{\omega} e^{-(t-\tau)} \Big|_{-\infty}^{t}$$

$$+ \int_{-\infty}^{t} \frac{\cos \tau}{\omega} e^{-(t-\tau)} d\tau$$

Effect of RC circuit on signal – convolution

$$= -\frac{\cos\omega\tau}{\omega}e^{-(t-\tau)}\Big|_{-\infty}^{t} + \int_{-\infty}^{t}\frac{\cos\omega\tau}{\omega}e^{-(t-\tau)}\,d\tau = -\frac{\cos\omega\tau}{\omega} + \int_{-\infty}^{t}\frac{\cos\omega\tau}{\omega}e^{-(t-\tau)}\,d\tau$$

Integrate by parts again:

$$V_{out} = -\frac{\cos \omega t}{\omega} + \int_{-\infty}^{t} e^{-(t-\tau)} d\left(\frac{\sin \omega \tau}{\omega^2}\right) = -\frac{\cos \omega t}{\omega} + \frac{\sin \omega \tau}{\omega^2} e^{-(t-\tau)} \Big|_{-\infty}^{t} - \int_{-\infty}^{t} \frac{\sin \omega \tau}{\omega^2} e^{-(t-\tau)} d\tau$$

$$= -\frac{\cos \omega t}{\omega} + \frac{\sin \omega t}{\omega^2} - \frac{1}{\omega^2} \int_{-\infty}^{t} \sin \omega t \, e^{-(t-\tau)} \, d\tau$$
$$= -\frac{\cos \omega t}{\omega} + \frac{\sin \omega t}{\omega^2} - \frac{V_{out}}{\omega^2}$$

Hence:

$$\left(1 + \frac{1}{\omega^2}\right) V_{\text{out}} = \frac{\sin \omega t}{\omega^2} - \frac{\cos \omega t}{\omega}$$
$$V_{\text{out}} = \frac{\sin \omega t - \omega \cos \omega t}{1 + \omega^2}$$

Effect of RC circuit on signal – convolution

Look at response of circuit at low and high frequencies:

See amplitude change, but also in V_{in} and V_{out} in phase for $\omega \ll 1$, V_{out} lags behind V_{in} by $\pi/4$ for $\omega = 1$ and by $\pi/2$ for $\omega \gg 1$.

Convolution example

- Look at functions: $f(x) = \begin{cases} 1 \text{ if } 1 < x < 2 \\ 0 \text{ otherwise.} \end{cases}$ $g(x) = \begin{cases} 1 \text{ if } 0 < x < 3 \\ 0 \text{ otherwise.} \end{cases}$
- And their convolution: $(f * g)(x) = \int_{-\infty}^{\infty} f(\xi)g(x - \xi)d\xi.$ For x = 0.5, 1, 1.5, 2, 4, 4.5, 5, 5.5,
 - we have (L to R, top to bottom):

Convolution example

Convolution theorem

- The value of (f * g)(x) at a given x is the overlapping area of f and g with $g(\xi) \rightarrow g(-\xi)$.
- Putting the graphs on the previous slide together, (f * g)(x) is:

- If F(f) is the Fourier Transform of f and F(g) that of g, then: F(f * g) = F(f)F(g).
- Using the inverse Fourier Transform, we can write:

 $\mathbf{f} \ast \mathbf{g} = \mathcal{F}^{-1} \big(\mathcal{F}(\mathbf{f}) \mathcal{F}(\mathbf{g}) \big).$