Fourier transforms

- In this lecture we will:
- Look at some more Fourier transforms.
- See how Fourier transforms can be used to solve differential equations.
- Do a useful integral.
- A comprehension question for this lecture:
- Calculate the Fourier transform of the function given by:
$\mathrm{f}(\mathrm{x})=1$ if $-2<\mathrm{x}<0$, $=0$ otherwise.

Fourier transforms - effect of shifting function

- Shift hat from origin.

- Is this function (the orange one!) even or odd?
- Would you expect the transform to be purely real ("cosine")...
- ...or purely imaginary ("sine")?

Shifted hat transform

- Fourier transform of hat is:

$$
\tilde{f}(\omega)=2 \frac{\sin \omega}{\omega}
$$

- Fourier transform of hat shifted to right is:

$$
\tilde{\mathrm{f}}(\omega)=\exp [-2 \mathrm{i} \omega] \times \frac{2 \sin \omega}{\omega}
$$

- Given this, what function would you expect the following transform to
- Hat shifted to left!
 represent:

$$
\tilde{f}(\omega)=\exp [2 i \omega] \times \frac{2 \sin \omega}{\omega} ?
$$

Slim hat

- Yet another function.

$$
\begin{aligned}
f(x) & =1 \text { if } 3 / 2<x<5 / 2 \\
& =0 \text { otherwise } .
\end{aligned}
$$

- Fourier transform:

$$
\tilde{\mathrm{f}}(\omega)=\int_{3 / 2}^{5 / 2} \exp [-i \omega \mathrm{x}] \mathrm{dx}
$$

$$
=-\frac{1}{\mathrm{i} \omega}\left(\exp \left[-\frac{5 \mathrm{i} \omega}{2}\right]-\exp \left[-\frac{3 \mathrm{i} \omega}{2}\right]\right)
$$

$$
=\frac{2}{\omega} \frac{1}{2 \mathrm{i}}\left(\exp \left[-\frac{3 \mathrm{i} \omega}{2}\right]-\exp \left[-\frac{5 \mathrm{i} \omega}{2}\right]\right)
$$

Inverse trans slim moved hat

$$
=\frac{2}{\omega} \frac{1}{2 \mathrm{i}} \exp \left[-\frac{4 \mathrm{i} \omega}{2}\right]\left(\exp \left[\frac{\mathrm{i} \omega}{2}\right]-\exp \left[-\frac{\mathrm{i} \omega}{2}\right]\right)
$$

$=\frac{2}{\omega} \frac{1}{2 \mathrm{i}} \exp \left[-\frac{4 \mathrm{i} \omega}{2}\right]\left(\exp \left[\frac{\mathrm{i} \omega}{2}\right]-\exp \left[-\frac{\mathrm{i} \omega}{2}\right]\right)$

$$
=\frac{2}{\omega} \exp [-2 i \omega] \sin \left(\frac{\omega}{2}\right)
$$

$=\frac{2}{\omega} \exp [-2 i \omega] \sin \left(\frac{\omega}{2}\right)$.

Transform of exponential

- E.g. (a>0):

$$
f(x)=\left\{\begin{array}{c}
\exp [-a x] \text { if } x \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

- Fourier transform is:

$$
\begin{aligned}
\tilde{\mathrm{f}}(\omega) & =\int_{0}^{\infty} \exp [-\mathrm{ax}] \exp [-i \omega \mathrm{x}] \mathrm{dx} \\
& =\int_{0}^{\infty} \exp [-(\mathrm{a}+\mathrm{i} \omega) \mathrm{x}] \mathrm{dx} \\
& =-\left[\frac{\exp [-(\mathrm{a}+\mathrm{i} \omega) \mathrm{x}]}{\mathrm{a}+\mathrm{i} \omega}\right]_{0}^{\infty} \\
& =-\left[\frac{\exp [-\mathrm{ax}] \exp [-\mathrm{i} \omega \mathrm{x}]}{\mathrm{a}+\mathrm{i} \omega}\right]_{0}^{\infty}=\frac{1}{\mathrm{a}+\mathrm{i} \omega}
\end{aligned}
$$

■ Have used: $\exp [-\mathrm{ax}] \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$.

- Transform:

- Recovered function:

Fourier transform of derivative

- One of the useful properties of Fourier transforms derives from the following result (for functions such that $\mathrm{f}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \pm \infty)$:

$$
\begin{aligned}
\tilde{f}^{\prime}(\omega)= & \int_{-\infty}^{\infty} f^{\prime}(x) \exp (-i \omega x) d x \\
= & {[f(x) \exp (-i \omega x)]_{-\infty}^{\infty} } \\
& \quad-\int_{-\infty}^{\infty} f(x)(-i \omega) \exp (-i \omega x) d x \\
= & i \omega \int_{-\infty}^{\infty} f(x) \exp (-i \omega x) d x \\
= & i \omega \tilde{f}(x) .
\end{aligned}
$$

- Applying this twice gives:

$$
\tilde{f}^{\prime \prime}(\omega)=-\omega^{2} \tilde{f}(x)
$$

Differential equations and Fourier transforms

■ This can be used to solve some differential equations, for example:

$$
a y^{\prime \prime}(x)+\mathrm{by}^{\prime}(\mathrm{x})+\mathrm{cy}(\mathrm{x})=\mathrm{f}(\mathrm{x}) .
$$

- Take the Fourier transform of both sides:

$$
a \tilde{y}^{\prime \prime}(\omega)+b \tilde{y}^{\prime}(\omega)+c \tilde{y}(\omega)=\tilde{f}(\omega)
$$

Hence:

$$
\begin{aligned}
& a\left(-\omega^{2}\right) \tilde{y}(\omega)+b(i \omega) \tilde{y}(\omega)+c \tilde{y}(\omega)=\tilde{f}(\omega) \\
& \Rightarrow\left(-a \omega^{2}+i \omega b+c\right) \tilde{y}(\omega)=\tilde{f}(\omega) \\
& \Rightarrow \tilde{y}(\omega)=\frac{\tilde{f}(\omega)}{-a \omega^{2}+i \omega b+c} .
\end{aligned}
$$

- Then use inverse Fourier transform to determine $\mathrm{y}(\mathrm{x})$.

One more useful Fourier transform

- Look at $f(x)=\exp \left[-a^{2} x^{2}\right]$.
- Calculate the transform:

$$
\begin{aligned}
\tilde{f}(\omega) & =\int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] \exp [-i \omega x] d x \\
& =\int_{-\infty}^{\infty} \exp \left[-\left(a^{2} x^{2}+i \omega x\right)\right] d x \\
& =\int_{-\infty}^{\infty} \exp \left(-a^{2}\left[\left(x+\frac{i \omega}{2 a^{2}}\right)^{2}+\frac{\omega^{2}}{4 a^{4}}\right]\right) d x \\
& =\int_{-\infty}^{\infty} \exp \left[-\frac{\omega^{2}}{4 a^{2}}\right] \exp \left(-a^{2}\left[x+\frac{i \omega}{2 a^{2}}\right]^{2}\right) d x \\
& =\exp \left[-\frac{\omega^{2}}{4 a^{2}}\right] \int_{-\infty}^{\infty} \exp \left[-a^{2} y^{2}\right] d y .
\end{aligned}
$$

- Using the result (see next slide):

$$
\int_{-\infty}^{\infty} \exp \left[-a^{2} y^{2}\right] d y=\frac{\sqrt{\pi}}{a}
$$

- We have:
$\tilde{f}(\omega)=\frac{\sqrt{\pi}}{\mathrm{a}} \exp \left[-\frac{\omega^{2}}{4 \mathrm{a}^{2}}\right]$.
- In this case, the Fourier transform has the same functional form (exponential) as the function.

A useful integral

- Define:

$$
\mathrm{I}=\int_{-\infty}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{x}^{2}\right] \mathrm{dx}
$$

- Then:

$$
\begin{aligned}
I^{2} & =\left(\int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] d x\right)^{2} \\
& =\int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] d x \int_{-\infty}^{\infty} \exp \left[-a^{2} y^{2}\right] d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] \exp \left[-a^{2} y^{2}\right] d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-a^{2}\left(x^{2}+y^{2}\right)\right] d x d y
\end{aligned}
$$

- Think of this as an integral over the (x, y) plane and convert to polar coordinates:
$x=r \cos \theta, y=r \sin \theta$
$d x d y=r d r d \theta$.
- We then have:

$$
\begin{aligned}
\mathrm{I}^{2} & =\int_{0}^{\infty} \int_{0}^{2 \pi} \exp \left[-\mathrm{a}^{2} \mathrm{r}^{2}\right] \mathrm{rdr} d \theta \\
& =\int_{0}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{r}^{2}\right] \mathrm{rdr} \int_{0}^{2 \pi} \mathrm{~d} \theta
\end{aligned}
$$

- Using:

$$
\mathrm{s}=\mathrm{r}^{2} \Rightarrow \mathrm{ds}=2 \mathrm{rdr} \Rightarrow \mathrm{dr}=\frac{\mathrm{ds}}{2 \mathrm{r}} \text { we get: }
$$

- Hence:

$$
\begin{aligned}
\mathrm{I}^{2} & =\int_{0}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{~s}\right] \mathrm{r} \frac{\mathrm{ds}}{2 \mathrm{r}}[\theta]_{0}^{2 \pi} \\
& =\left.\frac{1}{-2 \mathrm{a}^{2}} \exp \left[-\mathrm{a}^{2} \mathrm{~s}\right]\right|_{0} ^{\infty} \times 2 \pi \\
& =\left(0-\frac{-1}{2 \mathrm{a}^{2}}\right) \times 2 \pi=\frac{\pi}{\mathrm{a}^{2}} .
\end{aligned}
$$

- This gives: $\mathrm{I}=\sqrt{\pi} / \mathrm{a}$.

Fourier series and transforms in physics

- The time development of many physical systems is described by partial differential equations (involving say position x and time t).
- Often we know the initial configuration, e.g. as a function of x at time zero.
- In the case of a periodic initial configuration, or one that is confined to a finite region of x, it is often useful to write this configuration as a Fourier series.
- Each mode in the series typically has simple (but different) behaviour as a function of t.
- Each mode can therefore be solved and its behaviour with t calculated.
- The behaviour of the system can then be found by summing up the solutions for the individual modes.
- Examples include heat diffusing along a metal bar or waves on strings.
- A similar procedure can be used for non-periodic configurations and those not confined to a limited x range.
- In these cases, Fourier transforms are used rather than Fourier series.
- Examples include waves travelling through space and single pulses in electronic circuits.

