Fourier transforms

■ In this lecture we will:

- See how Fourier series can be written in exponential form.
- Introduce Fourier transforms.
- Look at some examples to try and gain a little insight into the Fourier transform.
- A comprehension question for this lecture:
- Show that the Fourier transform of the function:

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =-1 \text { if }-1<\mathrm{x}<1, \\
& =0 \text { otherwise },
\end{aligned}
$$

$$
\text { is } \tilde{f}(\omega)=-\frac{2}{\omega} \sin \omega \text {. }
$$

Fourier series using exponentials

■ The "standard" formulae for finding Fourier coefficients are:

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} g(t) d t \\
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} g(t) \cos \frac{2 n \pi t}{T} d t \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} g(t) \sin \frac{2 n \pi t}{T} d t
\end{aligned}
$$

■ Now $\exp [\mathrm{i} \theta]=\cos \theta+\mathrm{i} \sin \theta \ldots$

■ ...so could re-write the formulae as:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{~g}(\mathrm{t})\left(\exp \left[-\frac{2 \mathrm{in} \pi \mathrm{t}}{\mathrm{~T}}\right]\right) \mathrm{dt} \text { for } \mathrm{n} \neq 0 \\
& \mathrm{w}_{0}=\mathrm{a}_{0}
\end{aligned}
$$

- These contain the same information as the standard formulation:

$$
\begin{aligned}
\mathrm{w}_{\mathrm{n}} & =\frac{2}{\mathrm{~T}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{~g}(\mathrm{t})\left(\cos \left[-\frac{2 \mathrm{n} \pi \mathrm{t}}{\mathrm{~T}}\right]+\mathrm{i} \sin \left[-\frac{2 \mathrm{n} \pi \mathrm{t}}{\mathrm{~T}}\right]\right) \mathrm{dt} \\
& =\frac{2}{\mathrm{~T}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{~g}(\mathrm{t})\left(\cos \left[\frac{2 \mathrm{n} \pi \mathrm{t}}{\mathrm{~T}}\right]-\mathrm{i} \sin \left[\frac{2 \mathrm{n} \pi \mathrm{t}}{\mathrm{~T}}\right]\right) \mathrm{dt} \\
& =\mathrm{a}_{\mathrm{n}}-i b_{\mathrm{n}}
\end{aligned}
$$

Fourier series using exponentials

- Using this formulation, the Fourier series representation of the function becomes:

$$
\mathrm{g}(\mathrm{t})=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty} \operatorname{Re}\left[\mathrm{w}_{\mathrm{n}} \exp \left(\frac{2 \mathrm{in} \pi \mathrm{t}}{\mathrm{~T}}\right)\right]
$$

- This gives us the required result because:

$$
\begin{aligned}
g(t) & =a_{0}+\sum_{n=1}^{\infty} \operatorname{Re}\left[\left(a_{n}-i b_{n}\right)\left(\cos \frac{2 n \pi t}{T}+i \sin \frac{2 n \pi t}{T}\right)\right] \\
& =a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 n \pi t}{T}+b_{n} \sin \frac{2 n \pi t}{T}\right) .
\end{aligned}
$$

- We can go one step further...

Fourier series using exponentials

- Allow negative values of n.
- We then see that, because cosine is even and sine odd, we get coefficients such that:

$$
\begin{aligned}
& a_{n}=a_{-n} \\
& b_{n}=-b_{-n}
\end{aligned}
$$

- We can then write our function as:

$$
\mathrm{g}(\mathrm{t})=\frac{1}{2} \sum_{\mathrm{n}=-\infty}^{\infty} \operatorname{Re}\left[\mathrm{w}_{\mathrm{n}} \exp \left(\frac{2 \mathrm{in} \pi \mathrm{t}}{\mathrm{~T}}\right)\right] .
$$

- The factor of $1 / 2$ is needed as all terms appear twice (once with negative and once with positive n), except for the case where $\mathrm{n}=0$.

■ This also allows us to use the same formula to determine w_{0} as all the other coefficients, so:

$$
\mathrm{w}_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{-\mathrm{T} / 2}^{\mathrm{T} / 2} \mathrm{~g}(\mathrm{t})\left(\exp \left[-\frac{2 \mathrm{in} \pi \mathrm{t}}{\mathrm{~T}}\right]\right) \mathrm{dt} .
$$

- Note that $\mathrm{w}_{0}=2 \mathrm{a}_{0}$.
- (We may have to fix the w_{0} calc. by hand if n appears in the denominator, as in the case of the square wave.)
- This will make it easier to see the relationship between the Fourier series and the Fourier transform.
- First, check it all works for the square wave (with "fix" for w_{0} !).

Fourier series using exponentials

- Square wave, top using exponential, bottom using standard Fourier series (both with 20 terms).

- Plot the coeffs w_{n} as a function of n.
- The real part $\left(\mathrm{a}_{\mathrm{n}}\right)$ is shown as blue dots and the imaginary part $\left(b_{n}\right)$ as red stars:

- The b_{n} are all zero, as correspond to sine (odd) terms and function is even.

Fourier series and transforms

- Fourier series can describe periodic functions (e.g. square wave).
- If need to describe single pulse (e.g. "top hat"), need to move from using cosines and sines with frequencies $0, f, 2 f, 3 f \ldots$ to using full frequency spectrum.
- Make f continuous, so (schematically):

$$
\begin{aligned}
& g(t)=\sum_{n}\left(a_{n} \cos \frac{2 \pi n t}{T}+b_{n} \sin \frac{2 \pi n t}{T}\right) \\
& \rightarrow g(t)=\int a(\omega) \cos \omega t+b(\omega) \sin \omega t d \omega, \\
& \text { or } g(t)=\frac{1}{2} \sum \operatorname{Re}\left[w_{n} \exp \left(\frac{2 i n \pi t}{T}\right)\right] \\
& \rightarrow g(t)=\frac{1}{2 \pi} \int w(\omega) \exp (i \omega t) d \omega .
\end{aligned}
$$

- Square wave:

- Top hat:

Fourier series and transforms

- Conventional notation, is that Fourier transform of a function $f(x)$ is written:

$$
\tilde{f}(\omega)=\int_{-\infty}^{\infty} f(x) \exp (-i \omega x) d x
$$

- And the original function can be represented using:

$$
\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{\mathrm{f}}(\omega) \exp (\mathrm{i} \omega \mathrm{x}) \mathrm{d} \omega
$$

- Look at an example, the top hat.

$$
\begin{aligned}
\tilde{\mathrm{f}}(\omega) & =\int_{-1}^{1}(1) \exp (-\mathrm{i} \omega \mathrm{x}) \mathrm{dx} \\
& =-\left.\frac{1}{i \omega} \exp (-i \omega \mathrm{x})\right|_{-1} ^{1} \\
& =-\frac{1}{i \omega}(\exp (-\mathrm{i} \omega)-\exp (\mathrm{i} \omega))
\end{aligned}
$$

- This can be simplified:

$$
\begin{aligned}
& -\frac{1}{\mathrm{i} \omega}(\exp (-\mathrm{i} \omega)-\exp (\mathrm{i} \omega)) \\
= & \frac{2}{\omega}\left(\frac{\exp (\mathrm{i} \omega)-\exp (-\mathrm{i} \omega)}{2 \mathrm{i}}\right)=\frac{2}{\omega} \sin \omega .
\end{aligned}
$$

Hat transform

Fourier series and transforms

- Now use the transform to represent the original function:

$$
\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{\mathrm{f}}(\omega) \exp (\mathrm{i} \omega \mathrm{x}) \mathrm{d} \omega
$$

- Representation not perfect, because integration range reduced, equivalent to taking only first terms in the Fourier series.
- Fourier coefficients for square wave:

- Fourier transform for top hat:

Using Fourier transforms

- Similar example as for Fourier series.
- How does an electronic pulse respond to passage through a high- or low-pass filter?
- Describe the pulse using a Fourier transform.
- Apply the frequency dependent function (filter) and evaluate the inverse Fourier transform.
- E.g. for low-pass filters, reduce range of integration
$f(x)=\frac{1}{2 \pi} \int_{-2 \pi f_{\text {top }}}^{2 \pi f_{\text {op }}} \tilde{f}(\omega) \exp (i \omega x) d \omega$
- Input:

■ Output:

Using Fourier transforms

- For high-pass filter, omit central region of integration:

$$
\begin{array}{r}
\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{-\infty}^{-2 \pi f_{\text {bot }}} \tilde{f}(\omega) \exp (\mathrm{i} \omega \mathrm{x}) \mathrm{d} \omega+ \\
\frac{1}{2 \pi} \int_{2 \pi \mathrm{f}_{\text {bot }}}^{\infty} \tilde{\mathrm{f}}(\omega) \exp (\mathrm{i} \omega \mathrm{x}) \mathrm{d} \omega
\end{array}
$$

- For other filters, multiply transform by function that represents required effect.

■ Input:

■ Output:

