
Differential equations

■ In this lecture we will:

♦ Find out how to solve some more 

inhomogeneous second order 

differential equations. 

♦ See how some second order 

equations can be reduced to first 

order.

♦ Comment on some techniques for 

solving general second order 

linear differential equations.

■ Some comprehension questions for 

this lecture.

♦ Find the general solution of the 

equation: 

♦ Solve the equation:
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Inhomogeneous second order differential equations

■ If f(x) is of the form C sin gx or

D cos gx, or a sum of these terms, the 

trial solution is

■ Example:

■ Find the particular integral of

■ The auxiliary equation is

■ The roots are real and distinct, so the 

solution of the complementary 

equation is 

■

■ Substituting gives...

py Acos x Bsin x= g + g
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dx

= +

= − +

= − −

( )

( )

( )

A cos x Bsin x

4 Asin x Bcos x

3 A cos x Bsin x cos x

B 4A 3B 0

and A 4B 3A 1.

Hence B 2A and 10A 1

A 1 10 and B 1 5.
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Inhomogeneous second order differential equations

■ Therefore

■ Again, if the solutions of the 

complementary equation are of the 

same form as the particular integral, 

the latter must be modified.

■ Example: 

■ The auxiliary equation is

■ The solution of the complementary 

equation is 

■ We therefore try a particular integral of 

the form

■ Differentiating:
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Bsin 2x 2Bx cos 2x

d y
2Asin 2x 2Asin 2x 4Ax cos 2x

dx
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Inhomogeneous second 

order DEs

■ Substituting:

■

■ The general solution is therefore:

■ A second order equation with no 

explicit y dependence, i.e. of the 

form:

can be reduced to a first order 

equation by changing the dependent 

variable.

■ Putting              gives

■ This may be soluble using the 

methods for first order equations we 

have discussed previously.

( )

4Asin 2x 4Ax cos 2x

4Bcos 2x 4Bx sin 2x

4 Ax cos 2x Bx sin 2x cos 2x

4A 0 [sin 2x term]

4A 4A 0 [x cos 2x term]

4B 1 [cos 2x term]

4B 4B 0 [x sin 2x term].
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Hence B and y x sin 2x.
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Equation reducible to first 

order – type 1
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Equation reducible to first order – type 1

■ Example:

■ Solve the initial value problem:

■ No explicit y dependence, put

■ Then have:

■ We have y'(0) = – 2, so A = 1.

■ Using this we can perform a further 

integration:

■ The condition              allows the 

determination of B:

■ Hence:
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Equation reducible to first order – type 2

■ A second order equation with no 

explicit x dependence,

can also be reduced to a first order 

equation, this time by changing both 

the dependent and the independent 

variables.

■ Put               but consider v = v(y). 

■ Using the chain rule:

■ Hence we have:

■ Example:

■ Solve the equation

■ Change variable:

■ We then have:  
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Equation reducible to first 

order – type 2

■ Substituting for v, we get another 

separable equation:

■ The general second order linear 

differential equation has the form:

■ Note, here we are not assuming the 

coefficients are constant!

■ The general equation is 

inhomogeneous...

■ ...but if f(x) = 0, the equation is 

homogeneous:
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General second order 

linear DEs
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General second order linear differential equations

■ For “reasonable” coefficient 

functions, the homogeneous equation 

has the general solution:

■ Here, y1(x) and y2(x) must be 

independent.

■ If one solution, y1(x), of the 

homogeneous linear second order DE 

is known, a second independent 

solution, and hence the general 

solution, can be found.

■ Do this by substituting yh = v(x) y1(x) 

into the homogeneous equation.

■ This gives a first order separable 

equation for v'.

■ Example:

■ Show that                             has a 

solution y1 = e–2x and find the general 

solution of this equation, yh(x).

■ Have

■ Hence:

■ So y1(x) is a solution of the DE. 

■ Now try yh = v(x) y1(x) as general 

solution.

■
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General second order linear differential equations

■ Substitute these into the DE:

■ So yh = y1v is a general solution of 

the DE if:

■ Hence the required general solution of 

the homogeneous equation is:

■ The general solution of an 

inhomogeneous equation

can be found using the above ideas if 

both one of the solutions of the 

homogeneous equation, y1(x), and a 

particular solution, yp, can be deduced. 

■ Then we have:
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