Differential equations

- In this lecture we will:
- Find out how to solve some more inhomogeneous second order differential equations.
- See how some second order equations can be reduced to first order.
- Comment on some techniques for solving general second order linear differential equations.
- Some comprehension questions for this lecture.
- Find the general solution of the equation:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=7 \cos 3 x
$$

- Solve the equation:

$$
y \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}
$$

Inhomogeneous second order differential equations

- If $f(x)$ is of the form $C \sin \gamma x$ or
$\mathrm{D} \cos \gamma \mathrm{x}$, or a sum of these terms, the trial solution is $y_{p}=A \cos \gamma x+B \sin \gamma x$
- Example:
- Find the particular integral of

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-4 \frac{\mathrm{dy}}{\mathrm{dx}}+3 \mathrm{y}=\cos \mathrm{x}
$$

- The auxiliary equation is

$$
\begin{aligned}
& \mathrm{m}^{2}-4 \mathrm{~m}+3=0 \\
& \Rightarrow(\mathrm{~m}-1)(\mathrm{m}-3)=0 \\
& \text { so } \mathrm{m}_{1}=1 \text { and } \mathrm{m}_{2}=3
\end{aligned}
$$

- The roots are real and distinct, so the solution of the complementary equation is $y_{c}=C_{1} e^{x}+C_{2} e^{3 x}$.
- $y_{p}=A \cos x+B \sin x$,

$$
\frac{d y_{p}}{d x}=-A \sin x+B \cos x
$$

$$
\frac{\mathrm{d}^{2} \mathrm{y}_{\mathrm{p}}}{\mathrm{dx}^{2}}=-\mathrm{A} \cos \mathrm{x}-\mathrm{B} \sin \mathrm{x}
$$

- Substituting gives...

$$
\begin{aligned}
& (-A \cos x-B \sin x) \\
& \quad-4(-A \sin x+B \cos x) \\
& \quad+3(A \cos x+B \sin x)=\cos x \\
& \Rightarrow-B+4 A+3 B=0
\end{aligned}
$$

$$
\text { and }-A-4 B+3 A=1
$$

$$
\text { Hence } \mathrm{B}=-2 \mathrm{~A} \text { and } 10 \mathrm{~A}=1
$$

$$
\Rightarrow \mathrm{A}=1 / 10 \text { and } \mathrm{B}=-1 / 5
$$

Inhomogeneous second order differential equations

- Therefore $y_{p}=\frac{1}{10} \cos x-\frac{1}{5} \sin x$.
- Again, if the solutions of the complementary equation are of the same form as the particular integral, the latter must be modified.
- Example:

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+4 \mathrm{y}=\cos 2 \mathrm{x}
$$

- The auxiliary equation is

$$
\begin{aligned}
& \mathrm{m}^{2}+4=0 \\
& \Rightarrow \mathrm{~m}_{1}=2 \mathrm{i}, \mathrm{~m}_{2}=-2 \mathrm{i}
\end{aligned}
$$

- The solution of the complementary equation is $y_{c}=C_{1} \cos 2 x+C_{2} \sin 2 x$.
- We therefore try a particular integral of the form $\mathrm{y}_{\mathrm{p}}=\mathrm{x}(\mathrm{A} \cos 2 \mathrm{x}+\mathrm{B} \sin 2 \mathrm{x})$.
- Differentiating:

$$
\begin{aligned}
\frac{d y_{p}}{d x}=A \cos 2 x & -2 A x \sin 2 x \\
& +B \sin 2 x+2 B x \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y_{p}}{d x^{2}}= & -2 A \sin 2 x-2 A \sin 2 x-4 A x \cos 2 x \\
& +2 B \cos 2 x+2 B \cos 2 x-4 B x \sin 2 x \\
= & -4 A \sin 2 x-4 A x \cos 2 x \\
& +4 B \cos 2 x-4 B x \sin 2 x .
\end{aligned}
$$

Inhomogeneous second order DEs

Equation reducible to first order - type 1

- A second order equation with no explicit y dependence, i.e. of the form:
$f\left(\frac{d^{2} y}{d x^{2}}, \frac{d y}{d x}, x\right)=0$
can be reduced to a first order equation by changing the dependent variable.
- Putting $v=\frac{d y}{d x}$ gives $f\left(\frac{d v}{d x}, v, x\right)=0$.

■ This may be soluble using the methods for first order equations we have discussed previously.

Equation reducible to first order - type 1

- Example:
- Solve the initial value problem:

$$
\frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}, y(0)=1, y^{\prime}(0)=-2
$$

- No explicit y dependence, put $\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dx}}$.

■ Then have:

$$
\frac{\mathrm{dv}}{\mathrm{dx}}=x v^{2}
$$

$$
\Rightarrow \frac{\mathrm{dv}}{\mathrm{v}^{2}}=\mathrm{xdx} \text { and }-\frac{1}{\mathrm{v}}=\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{A}}{2}
$$

$$
\Rightarrow v=-\frac{2}{x^{2}+A} \text { or } \frac{d y}{d x}=-\frac{2}{x^{2}+A}
$$

- Using this we can perform a further integration:

$$
y=-2 \int \frac{\mathrm{dx}}{\mathrm{x}^{2}+1}
$$

$$
=-2 \tan ^{-1} x+B
$$

- The condition $y(0)=1$ allows the determination of B :

$$
\begin{aligned}
& -2 \tan ^{-1}(0)+B=1 \\
& \Rightarrow B=1
\end{aligned}
$$

- Hence:

$$
\mathrm{y}=1-2 \tan ^{-1} \mathrm{x} .
$$

- We have $\mathrm{y}^{\prime}(0)=-2$, so $\mathrm{A}=1$.

Equation reducible to first order - type 2

- A second order equation with no explicit x dependence,

$$
\mathrm{f}\left(\frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}, \frac{\mathrm{dy}}{\mathrm{dx}}, \mathrm{y}\right)=0
$$

can also be reduced to a first order equation, this time by changing both the dependent and the independent variables.

- Put $\mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dx}}$ but consider $\mathrm{v}=\mathrm{v}(\mathrm{y})$.
- Using the chain rule:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d v(y)}{d x}=\frac{d v}{d y} \frac{d y}{d x}=v \frac{d v}{d y}
$$

- Hence we have:

$$
f\left(\mathrm{v} \frac{\mathrm{dv}}{\mathrm{dy}}, \mathrm{v}, \mathrm{y}\right)=0 .
$$

- Example:
- Solve the equation $y \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$.
- Change variable: $\frac{d y}{d x}=v(y)$.
- We then have:
$y v \frac{d v}{d y}=v^{2} \Rightarrow y \frac{d v}{d y}=v$
and $\frac{d v}{v}=\frac{d y}{y}$ or $v=A y$.

Equation reducible to first General second order order - type 2
 linear DEs

- Substituting for v, we get another separable equation:

$$
\begin{aligned}
\frac{d y}{d x} & =A y \\
\text { or } \frac{d y}{y} & =A d x \\
\ln y & =A x+B \\
y & =e^{A x+B} \\
& =e^{A x} e^{B} \\
& =C^{A x}
\end{aligned}
$$

- The general second order linear differential equation has the form:

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x) .
$$

- Note, here we are not assuming the coefficients are constant!
- The general equation is inhomogeneous...
- ...but if $f(x)=0$, the equation is homogeneous:

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 .
$$

General second order linear differential equations

■ For "reasonable" coefficient functions, the homogeneous equation has the general solution:

$$
\mathrm{y}_{\mathrm{h}}(\mathrm{x})=\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{x})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{x})
$$

- Here, $y_{1}(x)$ and $y_{2}(x)$ must be independent.
- If one solution, $y_{1}(x)$, of the homogeneous linear second order DE is known, a second independent solution, and hence the general solution, can be found.
- Do this by substituting $y_{h}=v(x) y_{1}(x)$ into the homogeneous equation.
- This gives a first order separable equation for v^{\prime}.
- Example:
- Show that $y^{\prime \prime}+4 y^{\prime}+4 y=0$ has a solution $\mathrm{y}_{1}=\mathrm{e}^{-2 \mathrm{x}}$ and find the general solution of this equation, $y_{h}(x)$.
- Have $y_{1}^{\prime}=-2 e^{-2 x}$ and $y_{1}^{\prime \prime}=4 e^{-2 x}$

■ Hence:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=4 e^{-2 x}-8 e^{-2 x}+4 e^{-2 x}=0
$$

- So $y_{1}(x)$ is a solution of the DE.
- Now try $y_{h}=v(x) y_{1}(x)$ as general solution.
- $y_{h}=e^{-2 x} v(x)$
$y_{h}^{\prime}=-2 e^{-2 x} v+e^{-2 x} v^{\prime}$
$y_{h}^{\prime \prime}=4 e^{-2 x} v-2 e^{-2 x} v^{\prime}-2 e^{-2 x} v^{\prime}+e^{-2 x} v^{\prime \prime}$
$=4 e^{-2 x}-4 e^{-2 x} v^{\prime}+e^{-2 x} v^{\prime \prime}$.

General second order linear differential equations

- Substitute these into the DE:

$$
\begin{aligned}
0= & y^{\prime \prime}+4 y^{\prime}+4 y \\
= & 4 e^{-2 x} v-4 e^{-2 x} v^{\prime}+e^{-2 x} v^{\prime \prime} \\
& +4\left(-2 e^{-2 x} v+e^{-2 x} v^{\prime}\right) \\
& +4 e^{-2 x} v \\
= & e^{-2 x} v^{\prime \prime}
\end{aligned}
$$

- So $y_{h}=y_{1} v$ is a general solution of the DE if:

$$
\begin{aligned}
& \mathrm{e}^{-2 \mathrm{x}} \mathrm{v}^{\prime \prime}=0 \\
& \Rightarrow \mathrm{v}^{\prime \prime}=0 \\
& \text { or } \mathrm{v}=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}
\end{aligned}
$$

- Hence the required general solution of the homogeneous equation is:

$$
\begin{aligned}
\mathrm{y}_{\mathrm{h}} & =\mathrm{y}_{1} \mathrm{v} \\
& =\mathrm{C}_{1} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{C}_{2} \mathrm{xe}^{-2 \mathrm{x}} .
\end{aligned}
$$

- The general solution of an inhomogeneous equation

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=f(x)
$$ can be found using the above ideas if both one of the solutions of the homogeneous equation, $\mathrm{y}_{1}(\mathrm{x})$, and a particular solution, y_{p}, can be deduced.

■ Then we have:

$$
y(x)=y_{h}(x)+y_{p}(x)
$$

