
Differential equations

■ In this lecture we will:

♦ Find out how to solve various 

types of inhomogeneous second 

order differential equation. 

■ Some comprehension questions for 

this lecture.

♦ Find the general solution of the 

equations: 
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Inhomogeneous second order differential equations

■ Here, we look at inhomogeneous (or 

non-homogeneous) second order 

differential equations, i.e. equations 

of the form:

■ The homogenous differential 

equation obtained by setting f(x) = 0,

with the same coefficients as the 

above, is called the complementary 

equation.

■ Suppose the general solution 

(containing arbitrary constants) of the 

complementary equation is yc(x) and 

that a particular solution (no arbitrary 

constants) of the inhomogeneous 

equation is yp(x).

■ We can then show that

is a general solution of the 

inhomogeneous equation.

■ Do this by writing the solution of the 

complementary equation in the form 

yc(x) = y(x) – yp(x).
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Inhomogeneous second order differential equations

■ Then, substituting for yc (x):  ■ Hence, if we can find a general 

solution of the complementary 

equation, yc(x), and a particular 

solution (particular integral) of the 

inhomogeneous equation, their sum 

will be a general solution of the 

inhomogeneous equation.

■ We already know how to find 

solutions of homogeneous equations 

with constant coefficients.

■ How can we find particular solutions 

of inhomogeneous equations (again 

restricted to constant coefficients)?

■ Educated guesswork...also known as 

the method of undetermined 

coefficients.
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Inhomogeneous second order differential equations

■ An example:

■ Find the general solution of the 

equation:

■ The complementary equation is...

■ ...and the associated auxiliary 

equation:

■ Hence the general solution of the 

complementary equation is

■ Since f(x) = x2 and differentiating 

this will give both a term in x and a 

constant, we try the particular 

solution

■ The values of A, B and C can be 

determined by substituting into the 

inhomogeneous equation.

■ We need yp and its differentials:
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Inhomogeneous second order differential equations

■ Hence:

■ For this to hold for all x, must have:

■ Hence:

■ Our particular solution is thus:

■ And the general solution is:

■ Note, we still have two arbitrary 

constants, the values of which can be 

determined using initial conditions.

■ This illustrates how inhomogeneous 

differential equations can be solved if 

is a polynomial.

■ There is one possible difficulty...
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Inhomogeneous second order differential equations

■ Find a particular solution to the 

differential equation:

■ Try

■ Cannot substitute to work out 

coefficients.

■ Must modify trial function to ensure 

we get required behaviour.

■ In general, multiply yp by x, e.g. if 

trial function x2 + 2x + 1 doesn’t 

work, try x(x2 + 2x + 1).

■ Example here, try                   .

■ Then have: 

■ Hence C = 5 and yp(x) = 5x.

■ The auxiliary equation is

so the general solution of the 

complementary equation is: 

■ The general solution of the 

inhomogeneous equation is therefore

■ C1 and C2 can then be determined 

using the initial conditions.
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Inhomogeneous second order differential equations

■ Now consider case that is of the 

form 

■ The trial function depends on the 

roots of the auxiliary equation.

♦ If m1, m2 ≠ g, try yp = Aegx.

♦ If m1 = g, m2 ≠ g, try yp = Axegx.

♦ If m1 = m2 = g, try yp = Ax2egx.

■ Example:

■ Find a particular solution to:

■ The auxiliary equation 

■ Hence we try:

■ Substituting gives:

■ Similar to previous case, compare 

coefficients, in this case of e–x, xe–x

and x2e–x, to determine A.
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Inhomogeneous second order differential equations

■ Hence

■ The solution of the complementary 

equation is                   

giving a general solution of the 

inhomogeneous equation  
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