Differential equations

■ In this lecture we will:

- Look at second order homogeneous differential equations.
- Introduce the auxiliary equation and determine its roots.
- Find out how to solve the homogeneous second order differential equation in the case that the roots of the auxiliary equation are:
- Real and different.
- The same.
- Complex conjugate.
- Some comprehension questions for this lecture.
- Write down the general form of a homogeneous second order differential equation with constant coefficients.
- Solve the initial value problem:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0 \\
& \text { with } y(1)=1 \text { and } \frac{d y(1)}{d x}=1
\end{aligned}
$$

Homogeneous second order differential equations

- Consider second order homogeneous differential equations of the form:

$$
\mathrm{a} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{b} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{cy}=0
$$

- The coefficients a, b and c are all constants.
- Try to find a solution of the form

$$
y=e^{m x}
$$

- Differentiating this gives:

$$
\frac{d y}{d x}=m e^{m x} \text { and } \frac{d^{2} y}{d x^{2}}=m^{2} e^{m x}
$$

- Substituting into the original equation we have:

$$
\begin{aligned}
& \mathrm{am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{bme}^{\mathrm{mx}}+c e^{\mathrm{mx}}=0, \\
& \text { or } \mathrm{e}^{\mathrm{mx}}\left(\mathrm{am}^{2}+\mathrm{bm}+\mathrm{c}\right)=0
\end{aligned}
$$

- Now e^{mx} cannot be zero, so:

$$
\mathrm{am}^{2}+\mathrm{bm}+\mathrm{c}=0 .
$$

- This is called the auxiliary equation.

■ The above implies that $\mathrm{y}=\mathrm{e}^{\mathrm{mx}}$ is a solution of the differential equation iff (if and only if) m takes one of the values:

$$
\begin{aligned}
& \mathrm{m}_{1}=\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}, \\
& \mathrm{~m}_{2}=\frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

Homogeneous second order differential equations

■ When the discriminant $b^{2}-4 a c>0$, m_{1} and m_{2} are real and distinct.

- When $\mathrm{b}^{2}-4 \mathrm{ac}=0$, the roots are real and equal.
- When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, the roots are complex conjugate numbers.
- The principle of superposition:
- Supposing we have two solutions of our homogeneous second order differential equation, $y_{1}(x)$ and $y_{2}(x)$.
- The sum $C_{1} y_{1}(x)+C_{2} y_{2}(x)$ is also a solution of the equation.
- Prove this:

$$
\begin{aligned}
& a \frac{d^{2}}{d x^{2}}\left(C_{1} y_{1}+C_{2} y_{2}\right)+ \\
& \quad b \frac{d}{d x}\left(C_{1} y_{1}+C_{2} y_{2}\right)+c\left(C_{1} y_{1}+C_{2} y_{2}\right) \\
& =a_{1} \frac{d^{2} y_{1}}{d x^{2}}+a C_{2} \frac{d^{2} y_{2}}{d x^{2}}+ \\
& \quad b_{1} \frac{d y_{1}}{d x}+b C_{2} \frac{d y_{2}}{d x}+\mathrm{cC}_{1} y_{1}+\mathrm{cC}_{2} y_{2} \\
& =C_{1}\left(a \frac{d^{2} y_{1}}{d x^{2}}+b \frac{d y_{1}}{d x}+c y_{1}\right)+ \\
& \quad C_{2}\left(a \frac{d^{2} y_{2}}{d x^{2}}+b \frac{d y_{2}}{d x}+c y_{2}\right) \\
& =0 .
\end{aligned}
$$

Homogeneous second order differential equations

- Consider various possibilities for the solutions of the auxiliary equation.
■ If we have distinct roots, $\mathrm{y}_{1}=\mathrm{e}^{\mathrm{m}_{1} \mathrm{x}}$ and $y_{2}=e^{m_{2} \mathrm{x}}$ are linearly independent solutions of our differential equation.
- The functions $\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}_{2}(\mathrm{x})$ are linearly independent if one is not just a multiple of the other, that is:

$$
\mathrm{y}_{2}(\mathrm{x}) \neq \mathrm{ky}_{1}(\mathrm{x}) .
$$

- Example:

■ Find a general solution of:

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+5 \frac{\mathrm{dy}}{\mathrm{dx}}-6 \mathrm{y}=0
$$

- The auxiliary equation is:

$$
\begin{aligned}
& \mathrm{m}^{2}+5 \mathrm{~m}-6=0 \\
& \Rightarrow(\mathrm{~m}+6)(\mathrm{m}-1)=0 \\
& \Rightarrow \mathrm{~m}_{1}=1 \text { and } \mathrm{m}_{2}=-6 .
\end{aligned}
$$

- Hence a general solution to the equation is:

$$
y(x)=A e^{x}+\mathrm{Be}^{-6 x}
$$

- Hence, by the superposition principle, a general solution is: $y(x)=A e^{m_{1} x}+B e^{m_{2} x}$.

Homogeneous second order differential equations

- Another example, solve the initial value problem

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-y & =0 \\
y(0) & =0 \\
\frac{d y(0)}{d x} & =-1 \text { or } y^{\prime}(0)=-1
\end{aligned}
$$

- The auxiliary equation is:

$$
\begin{aligned}
& \mathrm{m}^{2}+2 \mathrm{~m}-1=0 \\
& \Rightarrow \mathrm{~m}_{1}=\frac{-2+\sqrt{8}}{2}=-1+\sqrt{2}
\end{aligned}
$$

- A general solution is

$$
y(x)=A e^{(-1+\sqrt{2}) x}+B e^{(-1-\sqrt{2}) x}
$$

- The initial conditions can be used to determine A and B :

$$
\text { and } m_{2}=\frac{-2-\sqrt{8}}{2}=-1-\sqrt{2}
$$

$$
\begin{aligned}
& \mathrm{y}(0)=\mathrm{Ae}^{0}+\mathrm{Be}^{0} \\
& \Rightarrow 0=\mathrm{A}+\mathrm{B} \text { or } \mathrm{A}=-\mathrm{B} \\
& \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{A}(-1+\sqrt{2}) \mathrm{e}^{(-1+\sqrt{2}) \mathrm{x}}+\mathrm{B}(-1-\sqrt{2}) \mathrm{e}^{(-1-\sqrt{2}) \mathrm{x}} \\
& \frac{\mathrm{dy}(0)}{\mathrm{dx}}=(-1+\sqrt{2}) \mathrm{A}+(-1-\sqrt{2}) \mathrm{B} \\
& -1=(-1+\sqrt{2}) \mathrm{A}-(-1-\sqrt{2}) \mathrm{A} \\
& \Rightarrow-1=2 \sqrt{2} \mathrm{~A} \text { or } \mathrm{A}=-\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

Homogeneous second order differential equations

- Rewriting:

$$
A=-\frac{\sqrt{2}}{4} \text { and } B=\frac{\sqrt{2}}{4} \text {. }
$$

- Putting this together:

$$
y(x)=-\frac{\sqrt{2}}{4} e^{(-1+\sqrt{2}) x}+\frac{\sqrt{2}}{4} e^{(-1-\sqrt{2}) x} .
$$

- If the roots of auxiliary equation are the same (m), we can use $\mathrm{y}=\mathrm{e}^{\mathrm{mx}}$ and $\mathrm{y}=\mathrm{xe}^{\mathrm{mx}}$ as two linearly independent solutions of the differential equation.
- Example:
- Find a general solution of:

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+4 \frac{\mathrm{dy}}{\mathrm{dx}}+4 \mathrm{y}=0
$$

- Auxiliary equation:

$$
\begin{aligned}
& \mathrm{m}^{2}+4 \mathrm{~m}+4=0 \\
& \Rightarrow(\mathrm{~m}+2)^{2}=0 \\
& \mathrm{~m}_{1}=\mathrm{m}_{2}=-2
\end{aligned}
$$

Homogeneous second order differential equations

■ General solution therefore:

$$
y(x)=A e^{-2 x}+B x e^{-2 x}
$$

■ What if the auxiliary equation has complex conjugate roots

$$
\mathrm{m}_{1}=\alpha+\mathrm{i} \beta \text { and } \mathrm{m}_{2}=\alpha-\mathrm{i} \beta \text { ? }
$$

- Then:

$$
\begin{aligned}
y & =A e^{(\alpha+i \beta) x}+B e^{(\alpha-i \beta) x} \\
& =e^{\alpha x}\left(A e^{i \beta x}+B e^{-i \beta x}\right) \\
& =e^{\alpha x}\binom{A(\cos (\beta x)+i \sin (\beta x))}{+B(\cos (-\beta x)+i \sin (-\beta x))} \\
& =e^{\alpha x}\binom{(A+B) \cos (\beta x)}{+i(A-B) \sin (\beta x)}
\end{aligned}
$$

- Writing $\mathrm{P}=\mathrm{A}+\mathrm{B}$ and $\mathrm{Q}=\mathrm{i}(\mathrm{A}-\mathrm{B})$, we then have the general solution:

$$
y(x)=e^{\alpha x}(P \cos (\beta x)+Q \sin (\beta x))
$$

■ Example:

- Find the general solution of:

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dx}}+4 \mathrm{y}=0
$$

- Auxiliary equation:

$$
m^{2}+2 m+4=0
$$

$$
\begin{aligned}
& m_{1}=\frac{-2+\sqrt{4-16}}{2}, m_{2}=\frac{-2-\sqrt{4-16}}{2} \\
& \Rightarrow m_{1}=-1+\sqrt{-3}, m_{2}=-1-\sqrt{-3}
\end{aligned}
$$

$$
\text { or } \mathrm{m}_{1}=-1+\mathrm{i} \sqrt{3} \text { and } \mathrm{m}_{2}=-1-\mathrm{i} \sqrt{3} \text {. }
$$

Homogeneous second order differential equations

- So, with $\alpha=-1$ and $\beta=\sqrt{3}$: $y=P e^{-x} \cos \sqrt{3} x+Q e^{-x} \sin \sqrt{3} x$.
- Another example:
- Solve the initial value problem: $\frac{d^{2} y}{d x^{2}}+4 y=0, y(0)=1, \frac{d y(0)}{d x}=0$.
- Auxiliary equation:

$$
\begin{aligned}
& \mathrm{m}^{2}+4=0 \\
& \Rightarrow \mathrm{~m}_{1}=2 \mathrm{i}, \mathrm{~m}_{2}=-2 \mathrm{i}
\end{aligned}
$$

- Hence $\alpha=0, \beta=2$.
- This gives:

$$
\begin{aligned}
& y=P \cos 2 x+Q \sin 2 x, \\
& \frac{d y}{d x}=-2 P \sin 2 x+2 Q \cos 2 x .
\end{aligned}
$$

- Using the initial conditions we have:

$$
\begin{aligned}
& y(0)=P=1 \\
& \frac{d y(0)}{d x}=2 Q=0, \text { so } Q=0 .
\end{aligned}
$$

- The required solution is therefore:

$$
y(x)=\cos 2 x
$$

