Differential equations

■ In this lecture we will:

- Introduce differential equations.
- Look at how differential equations can be classified.
- Learn how to find solutions to ordinary first order differential equations.
- Some comprehension questions for this lecture.
- What is the order of the following equation:

$$
7 \frac{d^{2} y}{d^{2}}+2 y+3=0
$$

- Is it linear? Is it homogeneous?
- The number of radioactive decays per unit time in a sample is proportional to the number, N , of nuclei that could potentially decay, i.e. it obeys the equation: $\frac{\mathrm{dN}}{\mathrm{dt}}=-\lambda \mathrm{N}$.
Solve this equation.

Differential equations

■ We will work in 1D in this section!
■ "Normal" equations relate an independent variable (often labelled x) to a dependent variable (often y).

- E.g. $y=\cos x-1 / 3$.
- Solutions of these equations (e.g. for $\mathrm{y}=0$) are typically a number, or a collection of numbers.
- Ordinary differential equations (ODEs) relate an independent variable (x) to a dependent variable (y) and one or more of its derivatives with respect to the independent variable.
- Example $\frac{d^{3} y}{d x^{3}}+\sin x \frac{d y}{d x}=5 x^{2}$.
- The solution of a differential equation is typically one or more functions which relate the dependent variable to the independent variable.
- DEs are the natural way of representing many physical laws and effects, e.g. Newton's second law, Maxwell's equations (partial derivatives, 3D!), radioactivity, etc.
- The order of a differential equation is the highest derivative that appears in the equation.
■ E.g. $\frac{d y}{d x}-y=0$ is $1^{\text {st }}$ order.
$x^{2} \frac{d^{5} y}{d x^{5}}-\sin x \frac{d y}{d x}=0$ is $5^{\text {th }}$ order.

Differential equations

- ODEs are linear if the dependent variable (y) and its derivatives appear to the power 1.
- E.g. $\frac{d y}{d x}=k y+x^{3}$ is linear.
$L \frac{d^{2} y}{d x^{2}}+g \sin y=0$ is non-linear.
- ODEs are homogeneous if each term contains either the dependent variable (y) or one of its derivatives.
- E.g. $\frac{d y}{d x}=A y$ is homogeneous.
$A \frac{d y}{d x}+B y+C=0$ is inhomogeneous.

■ Classify these equations:

- $\frac{d y}{d x}=k y+x^{2}$
- $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dt}^{2}}+\omega^{2} \mathrm{t}=0$
- $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{x}^{2}+1$
- $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=0$
- $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=17 \mathrm{u}$
- $\frac{\mathrm{d}^{2} u}{\mathrm{dx}^{2}}-x\left(\frac{\mathrm{du}}{\mathrm{dx}}\right)^{2}+u=17 u-32$

Solving first order differential equations

- Most obvious is the solution to equations of the form:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x})
$$

- All we need to do is take the "antiderivative" (integral) of both sides:

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int f(x) d x \\
& \Rightarrow y=\int f(x) d x
\end{aligned}
$$

- Note, this DE may also be written... $d y=f(x) d x$
- ...and its solution:

$$
\begin{aligned}
& \int d y=\int f(x) d x \\
& \Rightarrow y=\int f(x) d x
\end{aligned}
$$

- This works as long as we can integrate $f(x)$.
- There are many functions for which there is no exact and closed form for the integral!
- Also easy to solve are equations like:

$$
\begin{aligned}
& \frac{d y}{d x}=g(y) \text { or } d y=g(y) d x \\
& \Rightarrow \int d x=\int \frac{1}{g(y)} d y
\end{aligned}
$$

Solving first order DEs

Solving first order DEs separating variables

- An example:

$$
\begin{aligned}
\frac{d y}{d x} & =6 x^{2}-2 x+5 \\
y & =\int 6 x^{2}-2 x+5 d x \\
& =2 x^{3}-x^{2}+5 x+c
\end{aligned}
$$

■ Note constant of integration, c!

- Another example:
$\frac{d y}{d x}=y \Rightarrow d y=y d x$ and $\int \frac{d y}{y}=\int d x$
- Integrate and add constant:
$\ln \mathrm{y}=\mathrm{x}+\mathrm{c}$ or $\mathrm{y}=\exp (\mathrm{x}+\mathrm{c})$.
Hence $\mathrm{y}=\exp (\mathrm{x}) \exp (\mathrm{c})=\mathrm{A} \exp (\mathrm{x})$

■ Equations of the form...

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})
$$

- ...can be solved by separating the variables:

$$
\begin{aligned}
& \frac{d y}{g(y)}=f(x) d x \\
& \Rightarrow \int \frac{d y}{g(y)}=\int f(x) d x
\end{aligned}
$$

- Equation might need simplification to show that it is separable.

Solving first order DEs - separating variables

- An example:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{2}+x y^{2}}{x^{2} y-x^{2}} \\
& =\frac{y^{2}(1+x)}{x^{2}(y-1)} \\
& =\frac{1+x}{x^{2}} \frac{y^{2}}{(y-1)}
\end{aligned}
$$

■ Hence:

$$
\begin{aligned}
& \int \frac{y-1}{y^{2}} d y=\int \frac{1+x}{x^{2}} d x \\
& \int \frac{1}{y}-y^{-2} d y=\int x^{-2}+\frac{1}{x} d x \\
& \ln y+\frac{1}{y}=-\frac{1}{x}+\ln x+c
\end{aligned}
$$

Solving first order DEs
 - substitution

■ All equations of the form...

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x}, \mathrm{y})
$$

- ...in which $f(x, y)$ is a homogeneous function of degree zero, that is $f(t x, t y)=f(x, y)$, can be solved by first substituting $\mathrm{y}(\mathrm{x})=\mathrm{u}(\mathrm{x}) \times \mathrm{x}$.
- We then have (differentiate product):

$$
\frac{d y}{d x}=\frac{d(u x)}{d x}=x \frac{d u}{d x}+u
$$

- Substitute in the above equation:

$$
\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=\mathrm{f}(\mathrm{x}, \mathrm{ux})
$$

Solving first order DEs - substitution

- Now set $\mathrm{t}=1 / \mathrm{x}$:

$$
\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=\mathrm{f}\left(\frac{1}{\mathrm{x}} \mathrm{x}, \frac{1}{\mathrm{x}} \mathrm{ux}\right)=\mathrm{f}(1, \mathrm{u})
$$

- Can separate the variables to solve:

$$
\begin{aligned}
x \frac{d u}{d x}+u & =f(1, u) \\
\frac{d u}{d x} & =\frac{f(1, u)-u}{x} \\
\int \frac{d u}{f(1, u)-u} & =\int \frac{d x}{x} .
\end{aligned}
$$

- An example: $\frac{d y}{d x}=\frac{x+3 y}{2 x}$
- Substitute y = ux:

$$
\begin{aligned}
& x \frac{d u}{d x}+u=\frac{x+3 u x}{2 x} \\
& \Rightarrow x \frac{d u}{d x}=\frac{x+3 u x}{2 x}-u=\frac{1}{2}+\frac{u}{2} \\
& \Rightarrow \int \frac{2}{1+u} d u=\int \frac{d x}{x} \\
& \Rightarrow 2 \ln (1+u)=\ln x+c . \\
& U \operatorname{sing} u=\frac{y}{x} \\
& 2 \ln \left(1+\frac{y}{x}\right)=\ln x+c
\end{aligned}
$$

Solving first order DEs - integrating factor

- A further method is using an integrating factor.
- Applies to equations of the form

$$
\frac{d y}{d x}+y P(x)=Q(x)
$$

- The integrating factor (IF) is

$$
\exp \left(\int P(x) d x\right)
$$

- Multiply equation by IF:

$$
e^{\int P(x) d x}\left(\frac{d y}{d x}+y P(x)\right)=e^{\int P(x) d x} Q(x)
$$

- Expanding:

$$
\mathrm{e}^{\int \mathrm{Pdx}} \frac{d y}{d x}+\mathrm{e}^{\int \mathrm{Pdx}} y P(x)=\mathrm{e}^{\int \mathrm{Pdx}} \mathrm{Q}(\mathrm{x})
$$

- Hence (integrating w.r.t. x):

$$
\int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{dy}+\int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{yPdx}=\int \mathrm{e}^{\int P d x} \mathrm{Q} d x
$$

- Integrate first term by parts, i.e. use

$$
\int u d v=u v-\int v d u .
$$

$$
\int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{dy}=\mathrm{e}^{\int \mathrm{Pdx}} \mathrm{y}-\int \mathrm{yd}\left(\mathrm{e}^{\int \mathrm{Pdx}}\right)
$$

$$
=y e^{\int P d x}-\int y P e^{\int P d x} d x
$$

- Inserting back into top equation:

$$
\begin{aligned}
& y e^{\int P d x}-\int y P e^{\int P d x} d x \\
& \quad+\int e^{\int P d x} y P d x=\int e^{\int P d x} Q d x
\end{aligned}
$$

Solving first order DEs - integrating factor

- Hence we have:

$$
\begin{aligned}
& y e^{\int P d x}=\int \mathrm{e}^{\int P d x} \mathrm{Qdx} \\
& \Rightarrow \mathrm{y}=\mathrm{e}^{-\int \mathrm{Pdx}} \int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{Qdx}
\end{aligned}
$$

- An example:

$$
\frac{d y}{d x}+5 y=e^{2 x}
$$

- IF is $\mathrm{e}^{\int 5 \mathrm{dx}}=\mathrm{e}^{5 \mathrm{x}}$.
- Multiply through by IF:

$$
e^{5 x} \frac{d y}{d x}+5 y e^{5 x}=e^{2 x} e^{5 x}
$$

- The LHS is:

$$
\frac{d}{d x} y e^{5 x}=5 y e^{5 x}+e^{5 x} \frac{d y}{d x}
$$

- So we see that we can solve this equation using

$$
\begin{aligned}
\frac{d}{d x} y e^{5 x} & =e^{2 x} e^{5 x} \\
y e^{5 x} & =\int e^{7 x} d x \\
& =\frac{e^{7 x}}{7}+c
\end{aligned}
$$

- Hence:

$$
y=\frac{e^{7 x-5 x}}{7}+c e^{-5 x}=\frac{e^{2 x}}{7}+c e^{-5 x}
$$

Integrating factors - alternative derivation

- If have equation

$$
\mathrm{a}_{1}(\mathrm{x}) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{a}_{0}(\mathrm{x}) \mathrm{y}=\mathrm{b}(\mathrm{x})
$$

such that

$$
\begin{aligned}
\frac{d}{d x} a_{1} y & =a_{1} \frac{d y}{d x}+y \frac{d a_{1}}{d x} \\
& =a_{1} \frac{d y}{d x}+a_{0} y
\end{aligned}
$$

- That is, if $\frac{\mathrm{da}_{1}}{\mathrm{dx}}=\mathrm{a}_{0}$.

■ Then can rewrite and easily solve:
$\frac{d}{d x} a_{1}(x) y=b(x) \Rightarrow a_{1}(x) y=\int b(x) d x$ and $y=\frac{1}{a_{1}(x)} \int b(x) d x$.

■ To solve more general equations

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{P}(\mathrm{x}) \mathrm{y}=\mathrm{Q}(\mathrm{x})
$$

- Look for an integrating factor I(x) which equation can be multiplied by...

$$
\mathrm{I}(\mathrm{x}) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{I}(\mathrm{x}) \mathrm{P}(\mathrm{x}) \mathrm{y}=\mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x})
$$

- Choose this so that:

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{I}(\mathrm{x})=\mathrm{I}(\mathrm{x}) \mathrm{P}(\mathrm{x}) \mathrm{y}
$$

- To see why, cf. condition

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{a}_{1}(\mathrm{x})=\mathrm{a}_{0}(\mathrm{x})
$$

Integrating factors - alternative derivation

- But this is a separable equation:

$$
\begin{aligned}
& \frac{\mathrm{dI}(\mathrm{x})}{\mathrm{I}(\mathrm{x})}=\mathrm{P}(\mathrm{x}) \mathrm{dx} \\
& \int \frac{\mathrm{dI}(\mathrm{x})}{\mathrm{I}(\mathrm{x})}=\int \mathrm{P}(\mathrm{x}) \mathrm{dx} \\
& \ln (\mathrm{I}(\mathrm{x}))=\int \mathrm{P}(\mathrm{x}) \mathrm{dx} \\
& \mathrm{I}(\mathrm{x})=\exp \left(\int \mathrm{P}(\mathrm{x}) \mathrm{dx}\right)
\end{aligned}
$$

■ Our DE now becomes

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{I}(\mathrm{x}) \mathrm{y}=\mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x})
$$

- Which can be integrated to give:

$$
\begin{aligned}
& \mathrm{I}(\mathrm{x}) \mathrm{y}=\int \mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x}) \mathrm{dx} \\
& \Rightarrow \mathrm{y}=\frac{1}{\mathrm{I}(\mathrm{x})} \int \mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x}) \mathrm{dx} \\
& \text { or } \mathrm{y}=\mathrm{e}^{-\int \mathrm{P}(x) \mathrm{dx}} \int \mathrm{e}^{\int \mathrm{P}(\mathrm{x}) \mathrm{dx}} \mathrm{Q}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

