
Differential equations

■ In this lecture we will:
♦ Introduce differential equations.
♦ Look at how differential 

equations can be classified.
♦ Learn how to find solutions to 

ordinary first order differential 
equations.

■ Some comprehension questions for 
this lecture.
♦ What is the order of the following 

equation:

♦ Is it linear? Is it homogeneous?
♦ The number of radioactive decays 

per unit time in a sample is 
proportional to the number, N, of 
nuclei that could potentially 
decay, i.e. it obeys the equation: 

Solve this equation.
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Differential equations

■ We will work in 1D in this section!
■ “Normal” equations relate an 

independent variable (often labelled 
x) to a dependent variable (often y). 

■ E.g. y = cos x – 1/3.
■ Solutions of these equations (e.g. for 

y = 0) are typically a number, or a 
collection of numbers.

■ Ordinary differential equations 
(ODEs) relate an independent 
variable (x) to a dependent variable 
(y) and one or more of its derivatives 
with respect to the independent 
variable.

■ Example  

■ The solution of a differential equation 
is typically one or more functions 
which relate the dependent variable 
to the independent variable.

■ DEs are the natural way of 
representing many physical laws and 
effects, e.g. Newton’s second law, 
Maxwell’s equations (partial 
derivatives, 3D!), radioactivity, etc.

■ The order of a differential equation is 
the highest derivative that appears in 
the equation.

■ E.g.
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Differential equations

■ ODEs are linear if the dependent 
variable (y) and its derivatives appear 
to the power 1.

■ E.g.

■ ODEs are homogeneous if each term 
contains either the dependent variable 
(y) or one of its derivatives.

■ E.g.  

■ Classify these equations:
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Solving first order differential equations

■ Most obvious is the solution to 
equations of the form:

■ All we need to do is take the “anti-
derivative” (integral) of both sides:

■ Note, this DE may also be written...

■ ...and its solution:

■ This works as long as we can 
integrate f(x).

■ There are many functions for which 
there is no exact and closed form for 
the integral!

■ Also easy to solve are equations like:
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Solving first order DEs

■ An example:

■ Note constant of integration, c!
■ Another example:

■ Integrate and add constant:

■ Equations of the form...

■ ...can be solved by separating the 
variables:

■ Equation might need simplification to 
show that it is separable.
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Solving first order DEs
– separating variables

■ An example:

■ Hence:

■ All equations of the form...

■ ...in which f(x, y) is a homogeneous 
function of degree zero, that is 
f(tx, ty) = f(x, y), can be solved by 
first substituting y(x) = u(x) × x.

■ We then have (differentiate product):

■ Substitute in the above equation:
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Solving first order DEs – substitution

■ Now set t = 1/x:

■ Can separate the variables to solve:

■ An example:

■ Substitute y = ux:
du 1 1x u f x, ux f (1,u)
dx x x
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Solving first order DEs – integrating factor

■ A further method is using an 
integrating factor.

■ Applies to equations of the form

■ The integrating factor (IF) is 

■ Multiply equation by IF:

■ Expanding: 

■ Hence (integrating w.r.t. x):

■ Integrate first term by parts, i.e. use

■ Inserting back into top equation:
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Solving first order DEs – integrating factor

■ Hence we have:

■ An example:

■ IF is
■ Multiply through by IF: 

■ The LHS is:

■ So we see that we can solve this 
equation using

■ Hence:
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Integrating factors – alternative derivation

■ If have equation

such that 

■ That is, if 

■ Then can rewrite and easily solve:

■ To solve more general equations

■ Look for an integrating factor I(x) 
which equation can be multiplied 
by...

■ Choose this so that:

■ To see why, cf. condition
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Integrating factors – alternative derivation

■ But this is a separable equation: ■ Our DE now becomes

■ Which can be integrated to give:
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