Vector calculus – some odds and ends

- In this lecture we will:
 - Look again at finding the potential associated with a field using the expression:

$$\phi = \int_{C} \vec{E} \cdot d\vec{r}.$$

- Look at another way of finding the potential associated with a field.
- Look at an exam question or two.

- Some comprehension questions for this lecture.
 - Calculate the curl of the field

$$\vec{E} = \begin{pmatrix} 6xy^2 + 2xz^3 \\ 6x^2y - 6y^2z \\ 3x^2z^2 - 2y^3 \end{pmatrix}.$$

- Is it possible to represent this field as the gradient of a scalar potential?
- What is the quantity for gravitational fields that is analogous to electric charge for electric fields?

More on deriving a potential from a field

- Check path independence.
- Example field $\vec{E}(x, y) = (2x + y + x)$.
- Find the associated potential,

 $\phi = \int_{C} \vec{E} \cdot d\vec{r}$

- Integrate along $\overline{r}(t) = (x(t) \quad y(t))$ with t running from 0 to 1.
- Choose $\vec{r}(t) = (xt^2 yt^2)$ so: $\phi(x, y) = \int_0^1 \vec{E}(x(t), y(t)) \cdot \frac{d\vec{r}(t)}{dt} dt$ $= \int_0^1 E_x(x(t), y(t)) \frac{dx(t)}{dt} dt +$ $\int_0^1 E_y(x(t), y(t)) \frac{dy(t)}{dt} dt$

$$\frac{d x(t)}{dt} = \frac{d xt^2}{dt} = 2xt, \quad \frac{d y(t)}{dt} = 2yt.$$

This then gives:

$$\phi = \int_0^1 [2xt^2 + yt^2] \times 2xt \, dt + \int_0^1 xt^2 \times 2yt \, dt$$

$$= \int_0^1 [4x^2 + 2xy] \times t^3 \, dt + \int_0^1 2xy \times t^3 \, dt$$

$$= \frac{t^4}{4} \times (4x^2 + 2xy) + \frac{t^4}{4} \times 2xy \Big|_0^1$$

$$= x^2 + \frac{xy}{2} + \frac{xy}{2}$$

$$= x^2 + xy.$$

Same result as with $\vec{r}(t) = (xt - yt).$

Alternative way of getting a potential from a field

• See by doing an example.

•
$$\vec{E} = \begin{pmatrix} 6xy^2 + 2xz^3 \\ 6x^2y - 6y^2z \\ 3x^2z^2 - 2y^3 \end{pmatrix}$$
.
• Find ϕ such that: $\nabla \phi = \begin{pmatrix} 6xy^2 + 2xz^3 \\ 6x^2y - 6y^2z \\ 3x^2z^2 - 2y^3 \end{pmatrix}$.

That is
$$\frac{\partial}{\partial x}\phi = 6xy^2 + 2xz^3$$
 [1]
 $\frac{\partial}{\partial y}\phi = 6x^2y - 6y^2z$ [2]
 $\frac{\partial}{\partial z}\phi = 3x^2z^2 - 2y^3$ [3]

- From [1], integrating w.r.t. x: $\phi = 3x^2y^2 + x^2z^3 + f(y, z).$
- Take partial derivative w.r.t. y. $\frac{\partial}{\partial y}\phi = 6x^2y + \frac{\partial}{\partial y}f(y, z).$

From [2]:

$$6x^{2}y + \frac{\partial}{\partial y}f(y, z) = 6x^{2}y - 6y^{2}z$$

$$\Rightarrow \frac{\partial}{\partial y}f(y, z) = -6y^{2}z$$

$$\Rightarrow f(y, z) = -2y^{3}z + g(z).$$
This now gives:

$$\phi = 3x^{2}y^{2} + x^{2}z^{3} - 2y^{3}z + g(z).$$

Potential from a field

Constants in potentials

Now take the partial derivative with respect to z:

$$\frac{\partial}{\partial z}\phi = 3x^2z^2 - 2y^3 + \frac{\partial}{\partial z}g(z).$$

Compare this to [3]:

$$3x^{2}z^{2} - 2y^{3} = 3x^{2}z^{2} - 2y^{3} + \frac{\partial}{\partial z}g(z)$$
$$\Rightarrow \frac{\partial}{\partial z}g(z) = 0$$
$$\Rightarrow g(z) = 0$$

- \Rightarrow g(z) = const.
- We now have:

$$\phi = 3x^2y^2 - 2y^3z + x^2z^3 + \text{const.}$$

- Potentials are related to potential energies.
- Some examples:
- Electric potential.
 - (Scalar) field V(x y z).
 - Units, volts = joules/coulomb.
 - A charge q in the field V has a potential energy U = qV (joules).
- Gravitational potential.
 - $G(x, y, z) = g \times z$ (close to Earth).
 - Units J/kg.
 - A mass m in the field G has a potential energy U = m×G (joules).

Constants in potentials

- Can measure differences in potential energy (and hence potential), but not absolute values.
- Gravitational example:

- Gravitational potential in "table coordinates" is G(z) = gz.
- Gravitational potential in "floor coordinates" is $G(z') = gz' = gz + gh_T$.
- Potential energy change when ball falls to table, in table coordinates:
 - $\Delta U = mgh_B 0$ = mgh_B .
- Potential energy change when ball falls to table, in floor coordinates:
 - $\Delta U = mg(h_B + h_T) mgh_T$ = mgh_B .

Phys108 Exam May 2012

MATHEMATICS FOR PHYSICISTS II

TIME ALLOWED: 3 hours

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Question 1 carries 50% of the total marks.

Questions 2 and 3 each carry 25% of the total marks.

Answer either part (a) or part (b) of questions 2 and 3.

In the event of a student answering both parts of an either/or question and not clearly crossing out one answer, only the answer to part (a) of the question will be marked.

The marks allotted to each part of a question are indicated in square brackets.

All symbols have their usual meanings unless otherwise stated.

Phys108 Exam May 2012

Question 1.

(a)

The matrices **A**, **B** and **C** are given by:

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & -1 & 1 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 0 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 0 & 1 \end{pmatrix}.$$

Calculate the products **AB** and **CA**.

[6]

[5]

State which of the following expressions are correct:

(i) $\mathbf{A} = \mathbf{B}$.

(ii) BA = I, where I is the unit matrix.

(iii)
$$\mathbf{A}^{-1} = \mathbf{B}$$
.

(iv)
$$\mathbf{B} = \frac{1}{4} \begin{pmatrix} 0 & 2 & -2 \\ 1 & 2 & -2 \\ 1 & 1 & 0 \end{pmatrix}.$$
 [4]

Calculate the determinant $|\mathbf{A}|$ and the transpose \mathbf{A}^{T} of \mathbf{A} .

7

Phys108 Exam May 2012

(b)

Firstly, use Cramer's method to solve the system of simultaneous equations:

$$y + 2z = -2$$

 $z + 2x = 5$
 $x + 2y = 3.$
[6]

Secondly, write down the above simultaneous equations in the matrix form $A\bar{x} = \bar{c}$, where A is a

3×3 matrix and \bar{x} and \bar{c} are column vectors.	[2]

Invert A and use the inverted matrix to again solve the system of simultaneous equations. [7]

(c)

A vector field is defined by $\vec{E}(x, y, z) = x^2 \hat{i} + xy \hat{j} + z^2 \hat{k}$, where \hat{i} , \hat{j} and \hat{k} are unit vectors in the x, y and z directions of a Cartesian coordinate system. Find the divergence $\nabla \cdot \vec{E}$. [3]

Calculate the curl, $\nabla \times \vec{E}$. [7]