Vector calculus - some odds and ends

■ In this lecture we will:

- Look again at finding the potential associated with a field using the expression:
$\phi=\int_{C} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}$.
- Look at another way of finding the potential associated with a field.
- Look at an exam question or two.
- Some comprehension questions for this lecture.
- Calculate the curl of the field

$$
\overrightarrow{\mathrm{E}}=\left(\begin{array}{c}
6 x y^{2}+2 x z^{3} \\
6 x^{2} y-6 y^{2} z \\
3 x^{2} z^{2}-2 y^{3}
\end{array}\right)
$$

- Is it possible to represent this field as the gradient of a scalar potential?
- What is the quantity for gravitational fields that is analogous to electric charge for electric fields?

More on deriving a potential from a field

- Check path independence.
- Example field $\vec{E}(x, y)=(2 x+y \quad x)$.
- Find the associated potential,

$$
\phi=\int_{C} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}
$$

- Integrate along $\vec{r}(t)=(x(t) \quad y(t))$ with t running from 0 to 1 .
- Choose $\vec{r}(t)=\left(\begin{array}{ll}x t^{2} & y t^{2}\end{array}\right)$ so:

$$
\begin{aligned}
\phi(x, y)= & \int_{0}^{1} \overrightarrow{\mathrm{E}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \cdot \frac{\mathrm{d} \stackrel{\mathrm{r}}{ }(\mathrm{t})}{\mathrm{dt}} \mathrm{dt} \\
= & \int_{0}^{1} \mathrm{E}_{\mathrm{x}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}} \mathrm{dt}+ \\
& \int_{0}^{1} \mathrm{E}_{\mathrm{y}}(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})) \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}} \mathrm{dt}
\end{aligned}
$$

$$
\square \frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{dxt}}{} \mathrm{dt} \quad 2 \mathrm{xt}, \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}=2 \mathrm{yt} .
$$

- This then gives:

$$
\begin{aligned}
\phi & =\int_{0}^{1}\left[2 \mathrm{xt}^{2}+\mathrm{yt}^{2}\right] \times 2 \mathrm{xt} \mathrm{dt}+\int_{0}^{1} \mathrm{xt}^{2} \times 2 \mathrm{yt} \mathrm{dt} \\
& =\int_{0}^{1}\left[4 \mathrm{x}^{2}+2 \mathrm{xy}\right] \times \mathrm{t}^{3} \mathrm{dt}+\int_{0}^{1} 2 \mathrm{xy} \times \mathrm{t}^{3} \mathrm{dt} \\
& =\frac{\mathrm{t}^{4}}{4} \times\left(4 \mathrm{x}^{2}+2 \mathrm{xy}\right)+\frac{\mathrm{t}^{4}}{4} \times\left. 2 \mathrm{xy}\right|_{0} ^{1} \\
& =x^{2}+\frac{\mathrm{xy}}{2}+\frac{\mathrm{xy}}{2} \\
& =x^{2}+x y
\end{aligned}
$$

- Same result as with $\overrightarrow{\mathrm{r}}(\mathrm{t})=\left(\begin{array}{ll}\mathrm{xt} & \mathrm{yt}\end{array}\right)$.

Alternative way of getting a potential from a field

- See by doing an example.
- $\overrightarrow{\mathrm{E}}=\left(\begin{array}{l}6 x y^{2}+2 x z^{3} \\ 6 x^{2} y-6 y^{2} z \\ 3 x^{2} z^{2}-2 y^{3}\end{array}\right)$.
- Find ϕ such that: $\nabla \phi=\left(\begin{array}{l}6 x y^{2}+2 x z^{3} \\ 6 x^{2} y-6 y^{2} z \\ 3 x^{2} z^{2}-2 y^{3}\end{array}\right)$.
- That is $\frac{\partial}{\partial \mathrm{x}} \phi=6 \mathrm{xy}^{2}+2 \mathrm{xz}^{3}$

$$
\begin{equation*}
\frac{\partial}{\partial y} \phi=6 x^{2} y-6 y^{2} z \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial z} \phi=3 x^{2} z^{2}-2 y^{3} \tag{2}
\end{equation*}
$$

- From [1], integrating w.r.t. x :

$$
\phi=3 x^{2} y^{2}+x^{2} z^{3}+f(y, z) .
$$

■ Take partial derivative w.r.t. y.

$$
\frac{\partial}{\partial y} \phi=6 x^{2} y+\frac{\partial}{\partial y} f(y, z)
$$

- From [2]:
$6 x^{2} y+\frac{\partial}{\partial y} f(y, z)=6 x^{2} y-6 y^{2} z$

$$
\begin{aligned}
& \Rightarrow \frac{\partial}{\partial y} f(y, z)=-6 y^{2} z \\
& \Rightarrow f(y, z)=-2 y^{3} z+g(z)
\end{aligned}
$$

- This now gives:

$$
\phi=3 x^{2} y^{2}+x^{2} z^{3}-2 y^{3} z+g(z)
$$

Potential from a field

Constants in potentials

- Now take the partial derivative with respect to z :

$$
\frac{\partial}{\partial z} \phi=3 x^{2} z^{2}-2 y^{3}+\frac{\partial}{\partial z} g(z) .
$$

- Compare this to [3]:

$$
\begin{aligned}
& 3 x^{2} z^{2}-2 y^{3}=3 x^{2} z^{2}-2 y^{3}+\frac{\partial}{\partial z} g(z) \\
& \Rightarrow \frac{\partial}{\partial z} g(z)=0 \\
& \Rightarrow g(z)=\text { const. }
\end{aligned}
$$

- We now have:

$$
\phi=3 x^{2} y^{2}-2 y^{3} z+x^{2} z^{3}+\text { const. }
$$

- Potentials are related to potential energies.
- Some examples:
- Electric potential.
- (Scalar) field V(x y z).
- Units, volts = joules/coulomb.
- A charge q in the field V has a potential energy $\mathrm{U}=\mathrm{qV}$ (joules).
- Gravitational potential.
- $G(x, y, z)=g \times z$ (close to Earth).
- Units J/kg.
- A mass m in the field G has a potential energy $U=m \times G$ (joules).

Constants in potentials

- Can measure differences in potential energy (and hence potential), but not absolute values.
- Gravitational example:

- Gravitational potential in "table coordinates" is $\mathrm{G}(\mathrm{z})=\mathrm{gz}$.
- Gravitational potential in "floor coordinates" is $\mathrm{G}\left(\mathrm{z}^{\prime}\right)=\mathrm{gz}^{\prime}=\mathrm{gz}^{+} \mathrm{gh}_{\mathrm{T}}$.
- Potential energy change when ball falls to table, in table coordinates:

$$
\begin{aligned}
\Delta \mathrm{U} & =\mathrm{mgh}_{\mathrm{B}}-0 \\
& =\mathrm{mgh}_{\mathrm{B}} .
\end{aligned}
$$

■ Potential energy change when ball falls to table, in floor coordinates:

$$
\text { - } \begin{aligned}
\Delta \mathrm{U} & =\mathrm{mg}^{\left(\mathrm{h}_{\mathrm{B}}+\mathrm{h}_{\mathrm{T}}\right)-\mathrm{mgh}_{\mathrm{T}}} \\
& =\operatorname{mgh}_{\mathrm{B}} .
\end{aligned}
$$

Phys108 Exam May 2012

MATHEMATICS FOR PHYSICISTS II

TIME ALLOWED: 3 hours

INSTRUCTIONS TO CANDIDATES

Answer all questions.
Question 1 carries 50% of the total marks.
Questions 2 and 3 each carry 25% of the total marks.
Answer either part (a) or part (b) of questions 2 and 3.
In the event of a student answering both parts of an either/or question and not clearly crossing out one answer, only the answer to part (a) of the question will be marked.

The marks allotted to each part of a question are indicated in square brackets.

All symbols have their usual meanings unless otherwise stated.

Phys108 Exam May 2012

Question 1.

(a)

The matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are given by:

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 1 \\
-1 & -1 & 1
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & -\frac{1}{2} \\
1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 1 & 0
\end{array}\right) \text { and } \mathbf{C}=\left(\begin{array}{ccc}
1 & -2 & 0 \\
2 & 0 & 1
\end{array}\right) .
$$

Calculate the products $\mathbf{A B}$ and $\mathbf{C A}$.
State which of the following expressions are correct:
(i) $\mathbf{A}=\mathbf{B}$.
(ii) $\mathbf{B A}=\mathbf{I}$, where \mathbf{I} is the unit matrix.
(iii) $\mathbf{A}^{-1}=\mathbf{B}$.
(iv) $\mathbf{B}=\frac{1}{4}\left(\begin{array}{ccc}0 & 2 & -2 \\ 1 & 2 & -2 \\ 1 & 1 & 0\end{array}\right)$.

Calculate the determinant $|\mathbf{A}|$ and the transpose \mathbf{A}^{T} of \mathbf{A}.

Phys108 Exam May 2012

(b)

Firstly, use Cramer's method to solve the system of simultaneous equations:

$$
\begin{aligned}
& y+2 z=-2 \\
& z+2 x=5 \\
& x+2 y=3
\end{aligned}
$$

Secondly, write down the above simultaneous equations in the matrix form $\mathbf{A} \overrightarrow{\mathbf{x}}=\overline{\mathbf{c}}$, where \mathbf{A} is a
3×3 matrix and $\overrightarrow{\mathrm{x}}$ and $\overline{\mathrm{c}}$ are column vectors.
Invert \mathbf{A} and use the inverted matrix to again solve the system of simultaneous equations.
(c)

A vector field is defined by $\vec{E}(x, y, z)=x^{2} \hat{i}+x y \hat{j}+z^{2} \hat{k}$, where \hat{i}, \hat{j} and \hat{k} are unit vectors in the x, y and z directions of a Cartesian coordinate system.

Find the divergence $\nabla \cdot \stackrel{\rightharpoonup}{\mathrm{E}}$.
Calculate the curl, $\nabla \times \overrightarrow{\mathrm{E}}$.

