
Vector calculus

■ In this lecture we will:

♦ Sketch out how we can derive a 

potential from a field using line 

integrals.

♦ Do an example to check it works!

♦ Look at a physical example: 

deriving the electric potential 

from the electric field.

♦ Mention a caveat: there are some 

fields that cannot be derived from 

potentials.

■ Some comprehension questions for 

this lecture.

♦ What is the potential associated 

with the field: 
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Deriving a potential from a field

■ We have seen that we can get a field 

from a potential:

■ Suppose we have a field 

can we derive from this the 

associated potential f(x, y)?

■ Illustrate idea in 2D (more formal 

proof in text books!).

■ Consider stepping from A to B in the 

scalar field f(x, y).

■ Change in f is df, given by slope in 

direction of movement and step 

length.

■ For step dx in x direction:

■ For subsequent step dy in y direction

■ If step in x then y, df  dfx + dfy.
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Deriving a potential from a field

■ Rewriting this:

■ Now take n steps from initial position 

i to final position f:

■ The total change in f is then

■ Taking the limit of infinitely many 

infinitely small steps:

■ The subscript C tells us to move 

along curve from i to f.

■ If start at (0, 0) and move to (x, y) we 

have “climbed” f(x, y) - f(0, 0).
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Deriving a potential from a field

■ Example:

■ Field

■ Find the associated potential,

■ Integrate along

■ Then:

■ Using

■ Check: 
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Electric potential from electric field

■ Electric field due to point charge  

given by:

■ Write 

■ Using line integral method:

( )

( )

( )

3
2

3
2

3
2

2 2 2

2 2 2
0

2 2 2

x

x y z

q y
E .

4 x y z

z

x y z

 
 
 

+ + 
 
 =

  + +
 
 
 
 + +
 

0

q
K.

4
=



0

c

1 1 1

0 x y z

0 0 0

E dr

dx dy dz
E dt E dt E dt

dt dt dt

xt

with r(t) yt and taking the path

zt

to be from t 0 to t 1 as before.

f = f + 

= f + + +

 
 

=
 
 
 

= =



  

+q

5



Electric potential from electric field

■ Look at Ex integral:

■ There is a problem, can’t evaluate one 

limit of integral:    infinite at origin!

■ One solution is to change the path.

■ Move from point at infinity to 

position               then have:

■ Repeat for Ey and Ez and add results:

■ Note minus sign, not present when 

“physics convention” used, we have 

decided                not             . 
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Caveat: fields that are not derivable from potentials

■ Recall from lecture 6:

■ Hence, a vector field derived from a 

potential, e.g.               must always 

satisfy 

■ Conversely, a field for which the curl 

is not zero cannot be derived from a 

potential.

■ E.g. 

■ Using our prescription…

■ So:

■ Now calculate field:
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