Vector calculus

■ In this lecture we will:

- Define the curl of a vector field.
- Look at some examples to try and gain some insight into what the curl represents.
- Discuss the curl of the electric and magnetic fields.
- Some comprehension questions for this lecture.
- Indicate where the curl will be positive below.

- Calculate the curl of the field:

$$
\stackrel{\rightharpoonup}{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{lll}
\mathrm{y} & \mathrm{xy} & 0
\end{array}\right)
$$

Curl of a vector field

- The curl of a vector field is defined by the equation:

$$
\begin{aligned}
\nabla \times \overrightarrow{\mathrm{E}}(x, y, z) & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & E_{y} & E_{z}
\end{array}\right| \\
& =\left(\begin{array}{l}
\frac{\partial}{\partial y} E_{z}-\frac{\partial}{\partial z} E_{y} \\
\frac{\partial}{\partial z} E_{x}-\frac{\partial}{\partial x} E_{z} \\
\frac{\partial}{\partial x} E_{y}-\frac{\partial}{\partial y} E_{x}
\end{array}\right)
\end{aligned}
$$

- The curl of a vector field is a vector field.
- Can think of curl as cross product of ∇ operator and vector.
■ Look at an example (with z component zero so we can plot it!).
- $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\mathrm{y} \\ \mathrm{x}^{2} \\ 0\end{array}\right)$

$$
\left(\begin{array}{c}
\frac{\partial}{\partial y} F_{z}-\frac{\partial}{\partial z} F_{y} \\
\frac{\partial}{\partial z} F_{x}-\frac{\partial}{\partial x} F_{z} \\
\frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
2 x-1
\end{array}\right)
$$

Curl of vector field

- Plot the x and y components of $\overrightarrow{\mathrm{F}}$ as a vector field and the curl as a contour plot (shaded):

Vector field and its curl

- What does the curl tell us about the field?
- Again, the name gives as a hint!
- (A further hint is that the curl of a field is sometimes called the rotation.)
- See that the curl is positive where a small object "dropped into the field" would rotate in an anticlockwise direction and negative where it would rotate in a clockwise direction.

Curl of vector field

- Now define field which has constant angular velocity and look at its curl.
- Use $\mathrm{v}=\mathrm{r} \omega$ and set $\omega=1$, implies:
- $\overrightarrow{\mathrm{v}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}-\mathrm{y} \\ \mathrm{x} \\ 0\end{array}\right)$.

Calculate a curl

- Calculate the curl of the field:

$$
\stackrel{\rightharpoonup}{F}(x, y, z)=\left(\begin{array}{lll}
3 \sin x & 2 \cos x & -z^{2}
\end{array}\right) .
$$

- Determine the value of $\nabla \times \vec{F}\left(-\frac{\pi}{2}, \frac{\pi}{2}, 3\right)$

Curl of vector field

- Construct further examples:
$-\vec{R}(x, y, z)=\left(\begin{array}{c}\frac{y}{\sqrt{x^{2}+y^{2}}} \\ \frac{-x}{\sqrt{x^{2}+y^{2}}} \\ 0\end{array}\right)$
$\square \times \stackrel{\rightharpoonup}{\mathrm{R}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c} \\ 0 \\ 0 \\ \frac{-1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)$
- Plotting these quantities:

Curl of vector field

- Now using a contour plot for the curl:
$\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{Z})=\left(\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \frac{-\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}\right.$

Curl of vector field

- Now field with opposite curl:
- Plotting these quantities:

■ $\stackrel{\mathrm{L}}{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\frac{-\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ 0 \\ \square \\ \nabla \times \overrightarrow{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)\end{array}\right.$.

Curl of vector field

- And again as contour plot:

Curl of electric field

- One of Maxwell's equations (Faraday's Law) involves the curl of the electric field:
$\nabla \times \stackrel{\rightharpoonup}{\mathrm{E}}=-\frac{\partial \stackrel{\rightharpoonup}{\mathrm{B}}}{\partial \mathrm{t}}$.
- This implies that changing a magnetic field will cause an electric field to "swirl" around it.
- A further one of Maxwell's equations (Ampere's Law with Maxwell's correction) involves the curl of the magnetic field:

$$
\nabla \times \stackrel{\rightharpoonup}{\mathrm{B}}=\mu_{0} \stackrel{\rightharpoonup}{\mathrm{~J}}+\mu_{0} \varepsilon_{0} \frac{\partial \stackrel{\rightharpoonup}{\mathrm{E}}}{\partial \mathrm{t}} .
$$

- Here, $\overrightarrow{\mathrm{J}}$ is the current density.
- A magnetic field can therefore be induced by an electric current...

- ...or by a changing electric field.
- Changing E fields causes B fields and vice versa, so get waves!

Vector and vector calculus identities

- Some useful vector identities:

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}} \\
& \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~B}}=\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{~A}} \\
& \overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}=-\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{A}} \\
&(\overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{B}}) \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}}+\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{C}} \\
&(\overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{B}}) \times \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{C}}+\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}} \\
& \overrightarrow{\mathrm{~A}} \cdot(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{C}})= \overrightarrow{\mathrm{B}} \cdot(\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{A}}) \\
&=\overrightarrow{\mathrm{C}} \cdot(\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}) \\
& \overrightarrow{\mathrm{A}} \times(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}}) \overrightarrow{\mathrm{B}}-(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}) \overrightarrow{\mathrm{C}} \\
&(\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}) \cdot(\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{D}})=(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{C}})(\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{D}}) \\
&-(\overrightarrow{\mathrm{B}} \cdot \stackrel{\rightharpoonup}{\mathrm{C}})(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{D}}) \\
&(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}) \times(\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{D}})=(\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{D}})) \overrightarrow{\mathrm{C}} \\
&-(\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{C}})) \overrightarrow{\mathrm{D}}
\end{aligned}
$$

■ Identities for vector calculus:

$$
\begin{aligned}
\nabla(\psi+\phi) & =\nabla \psi+\nabla \phi \\
\nabla(\psi \phi) & =\phi \nabla \psi+\psi \nabla \phi \\
\nabla(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}) & =(\overrightarrow{\mathrm{A}} \cdot \nabla) \overrightarrow{\mathrm{B}}+(\overrightarrow{\mathrm{B}} \cdot \nabla) \overrightarrow{\mathrm{A}} \\
& +\overrightarrow{\mathrm{A}} \times(\nabla \times \overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{B}} \times(\nabla \times \overrightarrow{\mathrm{A}}) \\
\nabla \cdot(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) & =\nabla \cdot \overrightarrow{\mathrm{A}}+\nabla \cdot \overrightarrow{\mathrm{B}} \\
\nabla \cdot(\phi \overrightarrow{\mathrm{~A}}) & =\phi \nabla \cdot \overrightarrow{\mathrm{A}}+\mathrm{A} \cdot \nabla \phi \\
\nabla \cdot(\overrightarrow{\mathrm{~A}} \times \overrightarrow{\mathrm{B}}) & =\overrightarrow{\mathrm{B}} \cdot(\nabla \times \overrightarrow{\mathrm{A}})-\overrightarrow{\mathrm{A}} \cdot(\nabla \times \overrightarrow{\mathrm{B}}) \\
\nabla \times(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}) & =\nabla \times \overrightarrow{\mathrm{A}}+\nabla \times \overrightarrow{\mathrm{B}} \\
\nabla \times(\phi \overrightarrow{\mathrm{A}}) & =\phi \nabla \times \overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{A}} \times \nabla \phi \\
\nabla \times(\overrightarrow{\mathrm{A}} \times \stackrel{\rightharpoonup}{\mathrm{B}}) & =\overrightarrow{\mathrm{A}}(\nabla \cdot \overrightarrow{\mathrm{~B}})-\overrightarrow{\mathrm{B}}(\nabla \cdot \overrightarrow{\mathrm{~A}}) \\
& +(\overrightarrow{\mathrm{B}} \cdot \nabla) \overrightarrow{\mathrm{A}}-(\overrightarrow{\mathrm{A}} \cdot \nabla) \overrightarrow{\mathrm{B}} \\
\nabla \times(\nabla \phi) & =0, \nabla \cdot(\nabla \times \overrightarrow{\mathrm{A}})=0
\end{aligned}
$$

Example of proof of vector calculus identity

- Show that $\nabla \times(\nabla \phi)=0$.

$$
\nabla \times(\nabla \phi)=\nabla \times\left(\begin{array}{ccc}
\frac{\partial}{\partial \mathrm{x}} \phi & \frac{\partial}{\partial \mathrm{y}} \phi & \frac{\partial}{\partial \mathrm{z}} \phi
\end{array}\right)
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} \phi & \frac{\partial}{\partial y} \phi & \frac{\partial}{\partial z} \phi
\end{array}\right| \\
& =\left(\begin{array}{lll}
\frac{\partial}{\partial y} \frac{\partial}{\partial z} \phi-\frac{\partial}{\partial z} \frac{\partial}{\partial y} \phi & \frac{\partial}{\partial z} \frac{\partial}{\partial x} \phi-\frac{\partial}{\partial x} \frac{\partial}{\partial z} \phi & \frac{\partial}{\partial x} \frac{\partial}{\partial y} \phi-\frac{\partial}{\partial y} \frac{\partial}{\partial x} \phi
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

