Vector calculus

- In this lecture we will:
- Define the divergence of a vector field.
- Look at some examples to try and gain some insight into what the divergence represents.
- Discuss the divergence of the electric and magnetic fields.
- Some comprehension questions for this lecture.
- Indicate where the divergence will be positive below.

- Calculate the divergence of the field $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{lll}\mathrm{x}^{2} & 2 \mathrm{xy} & \mathrm{xyz}\end{array}\right)$.

Divergence of a vector field

- The divergence of a vector field is defined by the expression:
$\nabla \cdot \overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\frac{\partial}{\partial \mathrm{x}} \mathrm{F}_{\mathrm{x}}+\frac{\partial}{\partial \mathrm{y}} \mathrm{F}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \mathrm{F}_{\mathrm{z}}$
- Note, the divergence of a vector field is a scalar field.
- Can think of the divergence as dot product of vector with the operator

$$
\nabla=\left(\begin{array}{lll}
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}}
\end{array}\right)
$$

- Look at an example (in 2D so can visualise more easily):
- Plot vector field $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y})$:

$$
\stackrel{\rightharpoonup}{\mathrm{F}}(x, y)=\left(\frac{x}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right)
$$

Divergence of a vector field

- Calculate divergence, x component...

$$
\begin{aligned}
\frac{\partial}{\partial x} F_{x} & =\frac{\partial}{\partial x} \frac{x}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{\sqrt{x^{2}+y^{2}}-x \times \frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} 2 x}{x^{2}+y^{2}} \\
& =\frac{1}{\sqrt{x^{2}+y^{2}}}-\frac{x^{2}}{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}} \\
& =\frac{x^{2}+y^{2}-x^{2}}{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}} \\
& =\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

- ...and y component

$$
\begin{aligned}
\frac{\partial}{\partial y} F_{y} & =\frac{\partial}{\partial y} \frac{y}{\sqrt{x^{2}+y^{2}}} \\
& =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

- Putting these together:

$$
\begin{aligned}
\nabla \cdot \overrightarrow{\mathrm{F}} & =\frac{y^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{\frac{3}{2}}}+\frac{\mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{\frac{3}{2}}} \\
& =\frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}=\frac{1}{\mathrm{r}}
\end{aligned}
$$

Divergence of a vector field

- Plot $\overrightarrow{\mathrm{F}}$ and $\nabla \cdot \overrightarrow{\mathrm{F}}$:

Vector field and divergence

- Plot $\overrightarrow{\mathrm{G}}(\mathrm{x}, \mathrm{y})=-\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y})$ and $\nabla \cdot \overrightarrow{\mathrm{G}}$:

■ Divergence of field reveals "sources" (left) and "sinks" (right) of field.

Divergence of a vector field

- Plot $\overrightarrow{\mathrm{F}}$ and $\nabla \cdot \overrightarrow{\mathrm{F}}$ using contours:

- Plot $\overrightarrow{\mathrm{G}}(\mathrm{x}, \mathrm{y})=-\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y})$ and $\nabla \cdot \overrightarrow{\mathrm{G}}$:
(

Divergence of a field

- A field is defined by the equation: $\vec{F}(x, y, z)=\left(\begin{array}{lll}3 \sin x & 2 \cos x & -z^{2}\end{array}\right)$.
- Determine the divergence of the field.
- What is the value of $\nabla \cdot \vec{F}\left(\frac{\pi}{2}, 0,-1\right)$?

Divergence of a vector field

- Look for sources and sinks in another vector field:
- $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y})=\binom{\sin 2 \mathrm{x}}{\cos 2 \mathrm{y}}$
- Divergence of this field is:

$$
\begin{aligned}
\nabla \cdot \overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}) & =\frac{\partial}{\partial \mathrm{x}} \sin 2 \mathrm{x}+\frac{\partial}{\partial \mathrm{y}} \cos 2 \mathrm{y} \\
& =2 \cos 2 \mathrm{x}-2 \sin 2 \mathrm{y}
\end{aligned}
$$

- Plot $\overrightarrow{\mathrm{F}}$ and $\nabla \cdot \stackrel{\rightharpoonup}{\mathrm{F}}$:

Vector field and divergence

Divergence of a vector field

- Same as previous slide using contours to represent divergence.
- Plot $\overrightarrow{\mathrm{F}}$ and $\nabla \cdot \overrightarrow{\mathrm{F}}$:
- $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y})=\binom{\sin 2 \mathrm{x}}{\cos 2 \mathrm{y}}$
- Divergence is:

$$
\begin{aligned}
\nabla \cdot \stackrel{\rightharpoonup}{\mathrm{F}}(\mathrm{x}, \mathrm{y}) & =\frac{\partial}{\partial \mathrm{x}} \sin 2 \mathrm{x}+\frac{\partial}{\partial \mathrm{y}} \cos 2 \mathrm{y} \\
& =2 \cos 2 \mathrm{x}-2 \sin 2 \mathrm{y}
\end{aligned}
$$

Vector field and its divergence

Divergence of electric field

- One of Maxwell's equations (Gauss' Law) involves divergence of E field:

$$
\nabla \cdot \overrightarrow{\mathrm{E}}=\frac{\rho}{\varepsilon_{0}}
$$

- The quantity ρ is the density of electric charge.
- This equation is telling as that electric charge is the source of the electric field.

Divergence of electric field

- Another of Maxwell's equations (Gauss' Law for magnetism) involves the divergence of the magnetic field: $\nabla \cdot \overrightarrow{\mathrm{B}}=0$
- What does this equation tell us about the sources and sinks of the magnetic field?
- And about magnetic monopoles?
- Example of how magnetic field can be generated:

- How is magnetism caused in materials, e.g. "magnets"?
- In the earth?
- Reversal of Earth's magnetic field.

