Phys108 – Mathematics for Physicists II

- Lecturer:
 - Prof. Tim Greenshaw.
 - Oliver Lodge Lab, Room 333.
 - Office hours, Fri. 11:30...13:30.
 - ♦ Email green@liv.ac.uk
- **Lectures**:
 - ♦ Monday 14:00, HSLT.
 - Tuesday 13:00, HSLT.
 - Thursday 09:00, HSLT.
- Problems Classes:
 - Friday 9:00...11:00.
 - Central Teaching Labs, GFlex.

- Outline syllabus:
 - Matrices.
 - Vector calculus.
 - Differential equations.
 - Fourier series.
 - Fourier integrals.
- Recommended textbook:
 - "Calculus, a Complete Course",
 Adams and Essex, (Pub. Pearson).
- Assessment:
 - ◆ Exam end of S2: 70%.
 - Problems Classes: 20%.
 - ♦ Homework: 10%.

Vector calculus – the gradient of a scalar field

- In this lecture we will:
 - Revise partial differentiation.
 - Introduce scalar and vector fields.
 - Look at some methods of visualising scalar and vector fields.
 - Define the gradient of a scalar field.
 - Look at electric fields and potentials.

- Some comprehension questions for this lecture.
 - Explain which of the following can be represented as scalar and which as vector fields:
 - Atmospheric pressure.
 - Ocean currents.
 - Height above sea level across the UK.
 - Calculate the electric field associated with the electric potential $\phi(x, y, z) = 4z$.

Some revision – partial derivatives

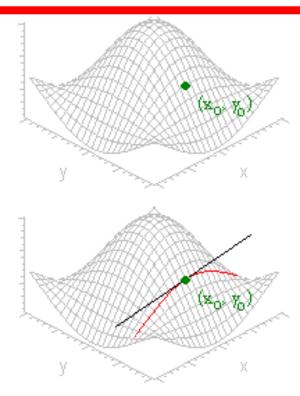
- Consider a function of two variables, f(x, y).
- The partial derivatives of this function w.r.t. x and y are defined by:

$$\frac{\partial f}{\partial x} = \frac{\lim}{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$\frac{\partial f}{\partial y} = \frac{\lim}{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Example: $f(x, y) = xy^2$.

$$\frac{\partial f}{\partial x} = y^2, \frac{\partial f}{\partial y} = 2xy.$$

Geometrically, consider z = f(x, y) as shown opposite:



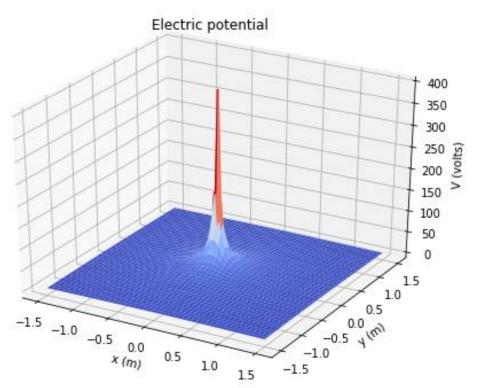
- Keep $y = y_0$, then $z = f(x, y_0)$ traces out the red curve shown.
- The slope of this curve at (x_0, y_0) is given by $\frac{\partial}{\partial x} z(x_0, y_0) = \frac{\partial z}{\partial x}\Big|_{x_0, y_0}$.

Some revision – partial derivatives

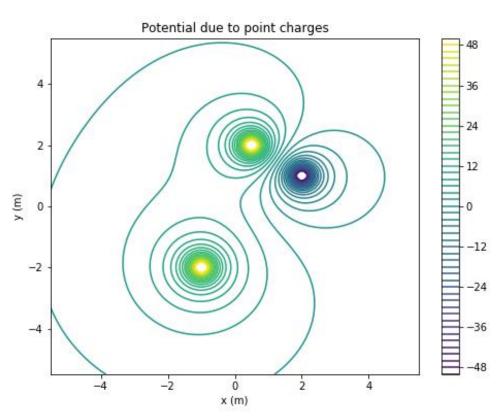
- Calculate the following derivatives:
- $\frac{\partial}{\partial x} \left(\cos 4x \sin 3y + \exp[-2xz] \right) =$
- $\frac{\partial}{\partial z} \left(\cos 4x \sin 3y + \exp[-2xz] \right) =$

Scalar fields

- A scalar field is a scalar that is defined at all points in space.
- Example, electric potential around point charge:



- Can plot in "3D" for field defined in (x, y) plane, or use contour plot.
- The contours are "equipotentials":

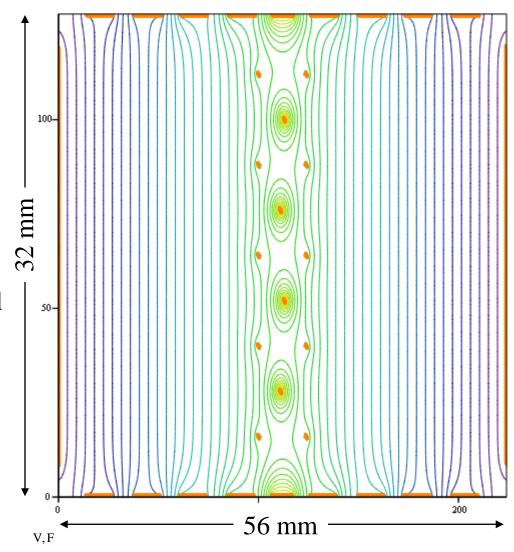


Contour plot of Snowdon



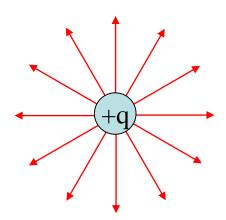
Scalar fields and equipotentials

- Electric potential in drift chamber illustrated using equipotentials.
- Electric field always normal to equipotentials.
- Electrons produced in drift volume by high energy charged particle passing through gas in chamber.
- Electrons drift along electric field lines to anode wires (central potential wells) where they produce electrical signals.
- Drift electric field ~ 1 MV/m.
- Using information on time taken for electrons to reach wires, reconstruct path of high energy charged particle.



Vector fields

- A vector field is a vector that is defined at all points in space.
- Physical examples include the electric field, e.g. that surrounding a point charge can be sketched as:



C -			n the (x, y) plane using arrows lirection of the vector whose le												
.5	pr	op	or	tic	ona	al	to	th	ie	m	ag	ni	tu	de	·.
								-							
												-			
4			٠	٠		٠						ě.			
			,			٠				٠	٠				
		- '	1	7	-		×				•				ŀ
		-	1	\					•	K	1	-			
٠		• *		١	٠.					1	7	•	٠		٠
٠			٠	4	4				•		•	٠		٠	
	٠	٠	•		V	•	٠		٠	٠					
٠	٠		٠	A	K	•		٠		٠		-	-		
		٠	٠	•	٠	٠		٠	٠	٠			4		

Scalar and vector field examples

A scalar field is defined by:

$$\phi(x, y, z) = 4x^2 - 3y + xz$$

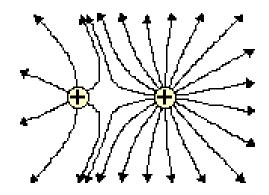
- What is the value of the field at the point (x, y, z) = (1, 2, 2)?
- A vector field is defined by:

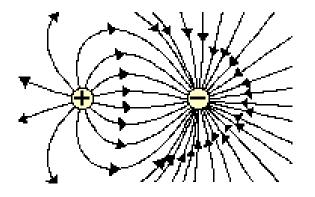
$$\vec{E}(x, y, z) = \begin{pmatrix} 1 \\ \cos x \\ \sin y \end{pmatrix}$$

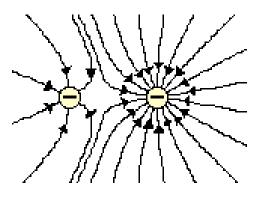
- What is the magnitude of the field at the point $(x, y, z) = (0, \frac{\pi}{2}, 0)$?
- What is its direction at the origin?

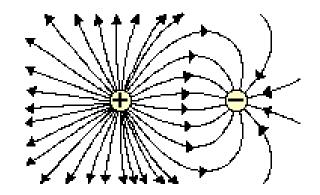
Vector fields and field lines

- Electric field lines are another way of visualising E fields.
- Lines trace path followed by (slow) test charge.
- Density of lines proportional to field strength.
- Examples shown opposite.
- Note that positive and negative charges are not balanced how can you tell this?









Gradient of a scalar field

The gradient of a scalar field f(x, y, z)is defined by:

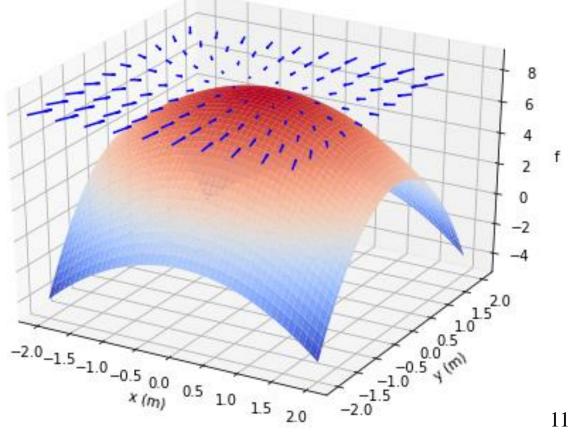
$$\nabla f(x, y, z) = \begin{cases} \frac{\partial}{\partial x} f(x, y, z) \\ \frac{\partial}{\partial y} f(x, y, z) \\ \frac{\partial}{\partial z} f(x, y, z) \end{cases}$$

- The gradient of a scalar field is a vector field.
- Can also write as row vector:

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{pmatrix}$$

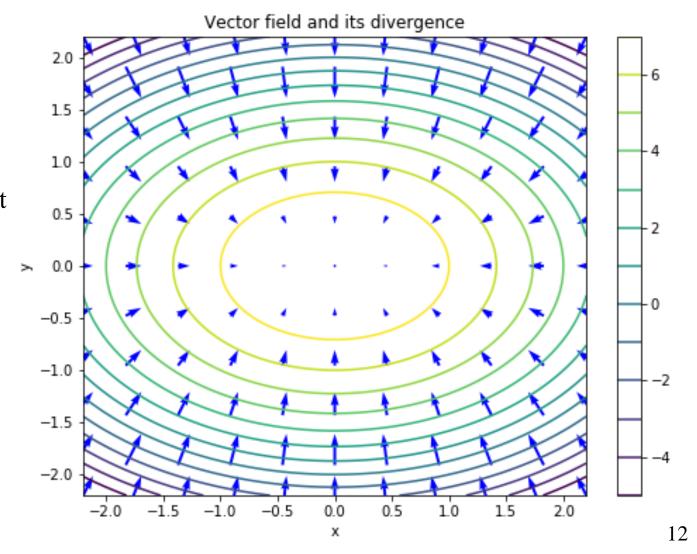
- Example, in 2D (so can draw on screen).
- $f(x, y) = -x^2 2y^2 + 8$, $\nabla f = \begin{pmatrix} -2x & -4y \end{pmatrix}$

Scalar field and gradient



Gradient of a scalar field

- Plot the scalar field $f(x, y) = -x^2 - 2y^2 + 8$ as a contour plot.
- Plot the field's gradient $\nabla f = \begin{pmatrix} -2x & -4y \end{pmatrix}$ as a vector plot.



Gradient of a scalar field

- The gradient vectors point in the direction of the steepest slope of the scalar field at the positions at which they are defined.
- The magnitude of the gradient vector gives the steepness of the slope (the gradient).
- A physical example:

$$\vec{E} = -\nabla V \equiv -\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)$$

Around a point charge q:

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{x^2 + y^2 + z^2}}.$$

Calculate E field using our prescription, x component:

$$\begin{split} \frac{\partial V}{\partial x} &= \frac{q}{4\pi\epsilon_0} \frac{\partial}{\partial x} (x^2 + y^2 + z^2)^{-\frac{1}{2}} \\ &= \frac{q}{4\pi\epsilon_0} \frac{-1}{2} (x^2 + y^2 + z^2)^{-\frac{3}{2}} \times 2x \\ &= -\frac{1}{4\pi\epsilon_0} \frac{q}{x^2 + y^2 + z^2} \frac{x}{\sqrt{x^2 + y^2 + z^2}} \\ &= -\frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \frac{x}{r}. \end{split}$$

Calculating **Ē** from V

- Doing the same for the y and z components we have:
- $\frac{\partial \mathbf{V}}{\partial \mathbf{y}} = -\frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}}{\mathbf{r}^2} \frac{\mathbf{y}}{\mathbf{r}}$
- and
- $\frac{\partial \mathbf{V}}{\partial \mathbf{z}} = -\frac{1}{4\pi\epsilon_0} \frac{\mathbf{q}}{\mathbf{r}^2} \frac{\mathbf{z}}{\mathbf{r}}.$
- Hence:
- $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right).$

- Now, $x/r = \cos \theta_{xr}$ is the component of the radius vector in the x direction, y/r that in the y direction and z/r that in the z direction, so we see:
- $|\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \text{ and...}$
 - ...the E field is directed radially away from the charge, as expected.

