Phys108 – Mathematics for Physicists II

Lecturer:

- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
 - ♦ Monday 14:00, HSLT.
 - Wednesday 13:00, HSLT.
 - Thursday 09:00, HSLT.
- Problems Classes:
 - Friday 9:00...11:00.
 - Central Teaching Labs, GFlex.

- Outline syllabus:
 - Matrices.
 - Vector calculus.
 - Differential equations.
 - Fourier series.
 - Fourier integrals.
- Recommended textbook:
 - "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).

1

- Assessment:
 - Exam end of S2: 70%.
 - Problems Classes: 20%.
 - Homework: 10%.

Lecture 3 – Matrices

- In this lecture we will:
 - Have a first look at how matrices transform vectors.
 - Introduce eigenvalues and eigenvectors.

- Some comprehension questions for this lecture.
- Find the eigenvalues and eigenvectors of the following matrices:

$$\begin{array}{cccc}
 & 2 & 0 \\
 & -3 & 5
\end{array}$$

$$\begin{array}{cccc}
 & 2 & 0 & 0 \\
 & -3 & 5
\end{array}$$

$$\begin{array}{cccc}
 & 2 & 0 & 0 \\
 & 0 & -1 & 0 \\
 & 0 & 0 & 4
\end{array}$$

Matrices transform vectors

- The following vector defines a position in the (x, y) plane:
 - $\vec{\mathbf{r}}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$
- If we multiply this vector by a matrix, the position it defines can change:

$$\vec{\mathbf{r}}_2 = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

In this case, the vector has been stretched and rotated.

See this in the plot below, in which \vec{r}_1 is red and \vec{r}_2 blue.

- Matrices can transform/rotate vectors.
- Interesting in quantum mechanics are vectors whose direction is <u>not</u> changed when they are multiplied by a particular matrix (or "operator").
- Look at an example matrix...

$$\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

...and vector:

$$\vec{\mathbf{r}}_{1} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

What happens to \vec{r}_2 as θ is changed, i.e. as the vector \vec{r}_1 changes direction? • Look at \vec{r}_1 and $\vec{r}_2 = \mathbf{M} \vec{r}_1$ as we increase θ from 0 to 9π .

- We see there are some values of θ for which \vec{r}_1 and \vec{r}_2 are pointing in the same direction (though they may have different lengths).
- These values of \vec{r}_1 and \vec{r}_2 are called eigenvectors.
- (The German word "eigen" means distinctive or singular.)
- When \vec{r}_1 and \vec{r}_2 are in the same direction, they must satisfy the equation $\vec{r}_2 = \lambda \vec{r}_1$ or $\mathbf{M} \vec{r}_1 = \lambda \vec{r}_1$.
- The constants λ are the eigenvalues associated with the eigenvectors.
- The eigenvector (or eigenvalue) equation is therefore: $\mathbf{M} \, \mathbf{\bar{x}} = \lambda \, \mathbf{\bar{x}}$.

- We can rewrite this: $\mathbf{M} \, \mathbf{\bar{x}} - \lambda \, \mathbf{\bar{x}} = \mathbf{\bar{0}}.$
- Tempting to then write $(\mathbf{M} \lambda) \, \mathbf{\bar{x}} = \mathbf{\bar{0}}...$
- ... but $\mathbf{M} \lambda$ is not defined!
- More correctly: $(\mathbf{M} - \lambda \mathbf{1}) \, \mathbf{\bar{x}} = \mathbf{\bar{0}}.$
- This is commonly abbreviated to $(\mathbf{M} - \lambda) \, \mathbf{\bar{x}} = 0$, on the understanding that there is a suppressed **1** in there...
- ...and that the 0 is in fact the vector:

$$\overline{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

- Can we solve $(\mathbf{M} \lambda \mathbf{1}) \, \mathbf{\bar{x}} = \mathbf{\bar{0}} \, \mathbf{?}$
- This is a weird equation!
- Write as $\mathbf{A} \, \mathbf{\bar{x}} = \mathbf{\bar{0}}$.
- Try and solve by multiplying both sides by A⁻¹.
- Gives $\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{0}}$.
- Either:
 - The only eigenvector is $\vec{0}$.
- Or:
 - A^{-1} doesn't exist.
- We have seen an example with a nonzero eigenvector, so the first alternative is not true...

- How can we have a matrix for which the inverse is not defined?
- If the determinant is zero!
- Hence, we must solve the equation $det(\mathbf{A}) = det(\mathbf{M} - \lambda \mathbf{1}) = 0.$
- Look at the example in the video.

$$\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Then:

$$\mathbf{M} - \lambda \mathbf{1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix}.$$

- Hence must solve:
 - $\begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = 0$ $\Rightarrow (2-\lambda)(2-\lambda) - 1 = 0$ or $\lambda^2 - 4\lambda + 3 = 0$ so $(\lambda - 1)(\lambda - 3) = 0$

so $\lambda = 1$ or 3.

- We now have the eigenvalues, how do we find the eigenvectors?
- Two methods possible.
- First: start from $(\mathbf{M} \lambda \mathbf{1}) \, \mathbf{\bar{x}} = \mathbf{\bar{0}}$.
- E.g. for $\lambda = 1$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Hence:

$$x + y = 0$$
$$x + y = 0$$
so $y = -x$.

Any vector of the form $k \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ will do.

E.g. pick "simplest":
$$\vec{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.

Second: start from $\mathbf{M} \, \mathbf{\bar{x}} = \lambda \, \mathbf{\bar{x}}$.

E.g. for
$$\lambda = 3$$
,
 $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \begin{pmatrix} x \\ y \end{pmatrix}$

Hence:

2x + y = 3x

 $\mathbf{x} + 2\mathbf{y} = 3\mathbf{y}$

so y = x.

• Any vector of the form $k \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ will do.

Pick:
$$\vec{\mathbf{x}}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

Check by substitution, e.g. for $\lambda = 1$:

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- Some useful results:
- Determinant of matrix is equal to product of eigenvalues.

$$|\mathbf{M}| = 3.$$

$$\prod_{i=1}^{2} \lambda_{i} = 1 \times 3 = 3.$$

Sum of diagonal elements of \mathbf{M} – the *trace* of \mathbf{M} , $Tr(\mathbf{M})$ – is equal to sum of eigenvalues.

•
$$\operatorname{Tr}(\mathbf{M}) = \sum_{i=1}^{2} M_{ii} = 2 + 2 = 4.$$

• $\sum_{i=1}^{2} \lambda_i = 1 + 3 = 4.$

• Eigenvalues of diagonal matrix are elements on the diagonal.

E.g.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.

Must solve:

$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = 0$$

i.e. $(1 - \lambda)(2 - \lambda)(3 - \lambda) = 0$

so
$$\lambda = 1$$
, 2 or 3.

• What are the eigenvectors in this case?

E.g. look at $\lambda = 2$. $\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = 2
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}$

i.e.
$$x = 2x$$
, $2y = 2y$ and $3z = 2z$.

- Looks strange, no constraint for y!
- Solution, x = 0, z = 0 and y allowed to have any value, e.g. pick y = 7.

Check: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 7 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 7 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 14 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 14 \\ 0 \end{pmatrix}.$