Phys108 - Mathematics for Physicists II

- Lecturer:
- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
- Monday 14:00, HSLT.
- Wednesday 13:00, HSLT.
- Thursday 09:00, HSLT.
- Problems Classes:
- Friday 9:00...11:00.
- Central Teaching Labs, GFlex.
- Outline syllabus:
- Matrices.
- Vector calculus.
- Differential equations.
- Fourier series.
- Fourier integrals.
- Recommended textbook:
- "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
- Exam end of S2: 70\%.
- Problems Classes: 20\%.
- Homework: 10%.

Lecture 3 - Matrices

■ In this lecture we will:

- Have a first look at how matrices transform vectors.
- Introduce eigenvalues and eigenvectors.
- Some comprehension questions for this lecture.
- Find the eigenvalues and eigenvectors of the following matrices:
- $\left(\begin{array}{cc}2 & 0 \\ -3 & 5\end{array}\right)$
- $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4\end{array}\right)$

Matrices transform vectors

- The following vector defines a position in the (x, y) plane:
$\overrightarrow{\mathrm{r}}_{1}=\binom{2}{3}$
■ If we multiply this vector by a matrix, the position it defines can change:

$$
\stackrel{\mathrm{r}}{2}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\binom{2}{3}=\binom{-1}{4}
$$

- In this case, the vector has been stretched and rotated.
- See this in the plot below, in which $\overrightarrow{\mathrm{r}}_{1}$ is red and $\overrightarrow{\mathrm{r}}_{2}$ blue.

Eigenvalues and eigenvectors

- Matrices can transform/rotate vectors.
- Interesting in quantum mechanics are vectors whose direction is not changed when they are multiplied by a particular matrix (or "operator").
- Look at an example matrix...

$$
\mathbf{M}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

- ...and vector:
$\stackrel{\rightharpoonup}{r}_{1}=\binom{\cos \theta}{\sin \theta}$
- What happens to \vec{r}_{2} as θ is changed, i.e. as the vector $\overrightarrow{\mathrm{r}}_{1}$ changes direction?
- Look at $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}=\mathbf{M} \overrightarrow{\mathrm{r}}_{1}$ as we increase θ from 0 to 9π.

Eigenvalues and eigenvectors

- We see there are some values of θ for which $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}$ are pointing in the same direction (though they may have different lengths).
- These values of $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}$ are called eigenvectors.
- (The German word "eigen" means distinctive or singular.)
- When $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}$ are in the same direction, they must satisfy the equation $\overrightarrow{\mathrm{r}}_{2}=\lambda \overrightarrow{\mathrm{r}}_{1}$ or $\mathbf{M} \overrightarrow{\mathrm{r}}_{1}=\lambda \overrightarrow{\mathrm{r}}_{1}$.
- The constants λ are the eigenvalues associated with the eigenvectors.
- The eigenvector (or eigenvalue) equation is therefore: $\mathbf{M} \overrightarrow{\mathrm{x}}=\lambda \overrightarrow{\mathrm{x}}$.
- We can rewrite this:

$$
\mathbf{M} \overrightarrow{\mathrm{x}}-\lambda \stackrel{\rightharpoonup}{\mathrm{x}}=\overrightarrow{0}
$$

■ Tempting to then write $(\mathbf{M}-\lambda) \overrightarrow{\mathrm{x}}=\overrightarrow{0} \ldots$

- ...but $\mathbf{M}-\lambda$ is not defined!
- More correctly:

$$
(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overrightarrow{0} .
$$

- This is commonly abbreviated to $(\mathbf{M}-\lambda) \overrightarrow{\mathrm{x}}=0$, on the understanding that there is a suppressed $\mathbf{1}$ in there...
- ...and that the 0 is in fact the vector:

$$
\overrightarrow{0}=\binom{0}{0} .
$$

Eigenvalues and eigenvectors

- Can we solve $(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overrightarrow{0}$?
- This is a weird equation!
- Write as $\mathbf{A} \overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
- Try and solve by multiplying both sides by \mathbf{A}^{-1}.
- Gives $\overrightarrow{\mathrm{x}}=\mathbf{A}^{-1} \overrightarrow{0}$.
- Either:
- The only eigenvector is $\overrightarrow{0}$.
- Or:
- \mathbf{A}^{-1} doesn't exist.
- We have seen an example with a nonzero eigenvector, so the first alternative is not true...

■ How can we have a matrix for which the inverse is not defined?
■ If the determinant is zero!

- Hence, we must solve the equation $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{M}-\lambda \mathbf{1})=0$.
- Look at the example in the video.

$$
\mathbf{M}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

- Then:

$$
\begin{aligned}
\mathbf{M}-\lambda \mathbf{1} & =\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right) .
\end{aligned}
$$

Eigenvalues and eigenvectors

- Hence must solve:

$$
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=0 \\
& \Rightarrow(2-\lambda)(2-\lambda)-1=0 \\
& \text { or } \lambda^{2}-4 \lambda+3=0 \\
& \text { so }(\lambda-1)(\lambda-3)=0 \\
& \text { so } \lambda=1 \text { or } 3 \text {. }
\end{aligned}
$$

- We now have the eigenvalues, how do we find the eigenvectors?
- Two methods possible.
- First: start from $(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
- E.g. for $\lambda=1$,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

- Hence:
$x+y=0$
$x+y=0$
so $\mathrm{y}=-\mathrm{x}$.
- Any vector of the form $\mathrm{k}\binom{1}{-1}$ will do.
E.g. pick "simplest": $\overrightarrow{\mathrm{x}}_{1}=\binom{1}{-1}$.
- Second: start from $\mathbf{M} \overrightarrow{\mathrm{x}}=\lambda \overrightarrow{\mathrm{x}}$.
- E.g. for $\lambda=3$,

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{x}{y}=3\binom{x}{y}
$$

Eigenvalues and eigenvectors

- Hence:
$2 x+y=3 x$
$x+2 y=3 y$
so $y=x$.
- Any vector of the form $\mathrm{k}\binom{1}{1}$ will do. Pick: $\overrightarrow{\mathrm{x}}_{2}=\binom{1}{1}$.
- Check by substitution, e.g. for $\lambda=1$:

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{1}{-1}=1\binom{1}{-1}
$$

- Some useful results:
- Determinant of matrix is equal to product of eigenvalues.
- $|\mathbf{M}|=3$.
- $\prod_{i=1}^{2} \lambda_{\mathrm{i}}=1 \times 3=3$.
- Sum of diagonal elements of \mathbf{M} - the trace of $\mathbf{M}, \operatorname{Tr}(\mathbf{M})$ - is equal to sum of eigenvalues.
- $\operatorname{Tr}(\mathbf{M})=\sum_{\mathrm{i}=1}^{2} \mathrm{M}_{\mathrm{ii}}=2+2=4$.
- $\sum_{\mathrm{i}=1}^{2} \lambda_{\mathrm{i}}=1+3=4$.

Eigenvalues and eigenvectors

- Eigenvalues of diagonal matrix are elements on the diagonal.
E.g. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.

■ Must solve:
$\left|\begin{array}{ccc}1-\lambda & 0 & 0 \\ 0 & 2-\lambda & 0 \\ 0 & 0 & 3-\lambda\end{array}\right|=0$
i.e. $(1-\lambda)(2-\lambda)(3-\lambda)=0$
so $\lambda=1,2$ or 3 .

- What are the eigenvectors in this case?
- E.g. look at $\lambda=2$.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=2\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
\text { i.e. } \mathrm{x}=2 \mathrm{x}, 2 \mathrm{y}=2 \mathrm{y} \text { and } 3 \mathrm{z}=2 \mathrm{z}
$$

- Looks strange, no constraint for y !
- Solution, $\mathrm{x}=0, \mathrm{z}=0$ and y allowed to have any value, e.g. pick $\mathrm{y}=7$.
- Check: $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)=2\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)$

$$
\left(\begin{array}{c}
0 \\
14 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
14 \\
0
\end{array}\right) .
$$

