Phys108 - Mathematics for Physicists II

■ Lecturer:

- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
- Monday 14:00, HSLT.
- Wednesday 13:00, HSLT.
- Thursday 09:00, HSLT.
- Problems Classes:
- Friday 9:00...11:00.
- Central Teaching Labs, GFlex.
- Outline syllabus:
- Matrices.
- Vector calculus.
- Differential equations.
- Fourier series.
- Fourier integrals.
- Recommended textbook:
- "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
- Exam end of S2: 70\%.
- Problems Classes: 20\%.
- Homework: 10%.

Lecture 1 - Matrices

■ In this lecture we will:

- Motivate the introduction of matrices.
- Look at matrix addition.
- Look at multiplication of matrices by a scalar.
- Look at multiplication of two matrices.
- Some comprehension questions:
- What is the value of the component in row 2 and column 3 of the following matrix?

$$
\left(\begin{array}{cccc}
-1 & 1 & 2 & 0 \\
3 & 0 & -3 & -5 \\
-2 & -4 & 0 & 6
\end{array}\right)
$$

■ What is the order of this matrix?

- Calculate the following:

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
2 & -1 \\
-1 & 3
\end{array}\right)=
$$

Motivating matrices - addition

- Tables of numbers are often useful.
- E.g. number of apples and bananas Alan, Bob and Catherine eat on Monday...

Fruit Monday	Apples	Bananas
Alan	1	4
Bob	0	5
Catherine	3	2

- ...and on Tuesday.

Fruit Tuesday	Apples	Bananas
Alan	3	2
Bob	5	0
Catherine	3	2

- How much have they eaten in total?

Mon + Tues	Apples	Bananas
Alan	4	6
Bob	5	5
Catherine	6	4

■ Have "table addition rule":

$$
\left(\begin{array}{ll}
1 & 4 \\
0 & 5 \\
3 & 2
\end{array}\right)+\left(\begin{array}{ll}
3 & 2 \\
5 & 0 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
4 & 6 \\
5 & 5 \\
6 & 4
\end{array}\right)
$$

- Only works if tables have same number of rows and columns!

Motivating matrices - multiplication

- Another way of using tables:
- Number of apples and bananas Alan, Bob and Catherine eat in a week:

Fruit in week	Apples	Bananas
Alan	12	21
Bob	13	17
Catherine	18	19

- Cost of apples and bananas:

Fruit	Cost (£)
Apples	0.50
Bananas	0.80

- How much does each person spend on fruit in a week?
- Alan: $12 \times 0.5+21 \times 0.8=22.8$
- Bob: $13 \times 0.5+17 \times 0.8=20.1$
- Cath: $18 \times 0.5+19 \times 0.8=24.2$

■ See we need "table multiplication rule":
$\left(\begin{array}{ll}12 & 21 \\ 13 & 17 \\ 18 & 19\end{array}\right) \cdot\binom{0.5}{0.8}=\left(\begin{array}{l}22.8 \\ 20.1 \\ 24.2\end{array}\right)$.

- Position in table is crucial, determines what numbers refer to.
- Number of columns in first table same as number of rows in second.

Motivating matrices - more multiplication

- More complicated problem: saving money by buying unripe fruit.
- Number of apples and bananas Alan, Bob and Catherine eat in a week:

Fruit in week	Apples	Bananas
Alan	12	21
Bob	13	17
Catherine	18	19

- Cost of ripe and unripe fruit:

Fruit	Cost ripe	Cost unripe
Apples	0.50	0.30
Bananas	0.80	0.40

- What would each person have to spend a week if they bought ripe or unripe fruit?
- Use table multiplication rule twice:

$$
\left(\begin{array}{ll}
12 & 21 \\
13 & 17 \\
18 & 19
\end{array}\right) \cdot\left(\begin{array}{ll}
0.5 & 0.3 \\
0.8 & 0.4
\end{array}\right)=\left(\begin{array}{ll}
22.8 & 12.0 \\
20.1 & 10.7 \\
24.2 & 13.0
\end{array}\right) .
$$

- Again, only works if number of columns in first table is same as number of rows in second!
- How would we determine the cost per person if they bought either ripe or unripe fruit for four weeks?

Examples

- Try the following:

■ $\left(\begin{array}{lll}1 & 2 & 4 \\ 5 & 0 & 1\end{array}\right)-\left(\begin{array}{ccc}0 & 1 & 2 \\ 2 & -3 & -2\end{array}\right)=$

- $\frac{1}{2}\left(\begin{array}{cc}2 & 4 \\ -2 & 6\end{array}\right)=$
- $\left(\begin{array}{cc}1 & 2 \\ -1 & 3 \\ 2 & -2\end{array}\right)\left(\begin{array}{cc}2 & 4 \\ -1 & -1\end{array}\right)=$
- $\left(\begin{array}{lll}1 & -1 & 2\end{array}\right)\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)=$

Introducing matrices - addition

- These tables are of course matrices.
- A matrix with one row is called a row vector...

$$
\overrightarrow{\mathrm{r}}=\left(\begin{array}{llll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d}
\end{array}\right)
$$

- ...with one column a column vector...

$$
\stackrel{\rightharpoonup}{\mathrm{c}}=\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)
$$

- ...and with m rows and n columns an $\mathrm{m} \times \mathrm{n}$ matrix.

$$
\mathbf{A}=\left(\begin{array}{ccc}
\mathrm{A}_{11} & \ldots & \mathrm{~A}_{\mathrm{ln}} \\
\vdots & \ddots & \vdots \\
\mathrm{~A}_{\mathrm{m} 1} & \cdots & \mathrm{~A}_{\mathrm{mn}}
\end{array}\right)
$$

- The dimensions define the order of the matrix (i.e. $\mathrm{m} \times \mathrm{n}$).
- Matrices are equal if are of same order and all components are same.
- Can add matrices if are of same order.
- Addition performed on corresponding components:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\mathrm{A}_{11} & \ldots & \mathrm{~A}_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\mathrm{~A}_{\mathrm{m} 1} & \cdots & \mathrm{~A}_{\mathrm{mn}}
\end{array}\right)+\left(\begin{array}{ccc}
\mathrm{B}_{11} & \ldots & \mathrm{~B}_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\mathrm{~B}_{\mathrm{m} 1} & \cdots & \mathrm{~B}_{\mathrm{mn}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\mathrm{A}_{11}+\mathrm{B}_{11} & \ldots & \mathrm{~A}_{1 \mathrm{n}}+\mathrm{B}_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\mathrm{~A}_{\mathrm{m} 1}+\mathrm{B}_{\mathrm{m} 1} & \cdots & \mathrm{~A}_{\mathrm{mn}}+\mathrm{B}_{\mathrm{mn}}
\end{array}\right)
\end{aligned}
$$

Introducing matrices - multiplication

- Matrices can be multiplied by a

$$
\begin{aligned}
& \text { scalar: } \\
& \mathrm{k}\left(\begin{array}{ccc}
\mathrm{A}_{11} & \ldots & \mathrm{~A}_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\mathrm{~A}_{\mathrm{m} 1} & \cdots & \mathrm{~A}_{\mathrm{mn}}
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{kA}_{11} & \ldots & \mathrm{kA}_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
\mathrm{kA}_{\mathrm{m} 1} & \cdots & \mathrm{kA}_{\mathrm{mn}}
\end{array}\right)
\end{aligned}
$$

■ The product, $\mathbf{A B}$, of two matrices \mathbf{A} and \mathbf{B} exists if the number of columns in \mathbf{A} is the same as the number of rows in \mathbf{B}.

- Rule for multiplication of an $m \times p$ matrix by a $p \times n$ matrix to give a matrix of order $m \times n$:

$$
\mathrm{AB}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{~A}_{\mathrm{ik}} \mathrm{~B}_{\mathrm{kj}}
$$

- E.g. for two 2×2 matrices:

$$
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) \cdot\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{ae}+\mathrm{bg} & \mathrm{af}+\mathrm{bh} \\
\mathrm{ce}+\mathrm{dg} & \mathrm{cf}+\mathrm{dh}
\end{array}\right)
$$

- Einstein summation convention: sometimes omit " Σ " and assume summation over repeated indices (common in books on General Relativity).

$$
\begin{aligned}
& \mathrm{AB}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \mathrm{~A}_{\mathrm{ik}} \mathrm{~B}_{\mathrm{kj}} \\
& \rightarrow \mathrm{AB}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ik}} \mathrm{~B}_{\mathrm{kj}}
\end{aligned}
$$

Examples

- Given matrices \mathbf{A}, \mathbf{B} and \mathbf{C} which satisfy $\mathbf{C}=\mathbf{A}+\mathbf{B}$, which of the following statements is correct?
- $\mathrm{C}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}}+\mathrm{B}_{\mathrm{ji}}$.
- $\mathrm{C}_{\mathrm{ik}}=\mathrm{A}_{\mathrm{ik}}+\mathrm{B}_{\mathrm{ik} k}$.
- Matrices \mathbf{E}, \mathbf{F} and \mathbf{G} have order $2 \times 2,2 \times 4$ and 4×2, respectively. Which of the following quantities is defined, EF, EG, FG?
- Express the following matrix as a scalar multiplied by a matrix:

$$
\left(\begin{array}{cc}
3 & -6 \\
-9 & 3 \\
-6 & 12
\end{array}\right)
$$

Examples

- Multiply the following matrix and vector:

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 1 \\
2 & 3 & -2
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

■ Write these simultaneous equations as a matrix multiplying a vector:

- $\quad 2 x-y=12$

$$
-3 x+2 y=7
$$

- $\quad 2 y-x+2 z=12$

$$
-3 x+2 y-z+2=7
$$

- Is matrix addition commutative, i.e. does $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$?
- Is matrix multiplication commutative?
- Show matrix multiplication and addition are associative (i.e. $\mathbf{A}(\mathbf{B C})=$ $(\mathbf{A B}) \mathbf{C}$ etc.) for the matrices:

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
1 & 2 \\
2 & -3
\end{array}\right), \mathbf{C}=\left(\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right)
$$

- Show also that matrix multiplication is distributive over matrix addition for the three matrices \mathbf{A}, \mathbf{B} and \mathbf{C}, i.e. $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$ and

$$
\mathrm{z}-\mathrm{x}+5 \mathrm{y}=0
$$ $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$.

$$
2 y-z=-3
$$

