Fourier transforms

- In this lecture we will:
- Look at some more Fourier transforms.
- See how Fourier transforms can be used to solve differential equations.
- Do a useful integral.

1

Shifted hat transform

- Fourier transform of hat is:
$\tilde{f}(\omega)=2 \frac{\sin \omega}{\omega}$.
- Fourier transform of hat shifted to right is:
$\tilde{f}(\omega)=\exp [-2 \mathrm{i} \omega] \times \frac{2 \sin \omega}{\omega}$.
- Given this, what function would you expect the following transform to
- Hat shifted to left!
 represent:
- A comprehension question for this lecture:
- Calculate the Fourier transform of the function given by: $\mathrm{f}(\mathrm{x})=1$ if $-2<\mathrm{x}<0$,
$=0$ otherwise.
$\tilde{\mathrm{f}}(\omega)=\exp [2 \mathrm{i} \omega] \times \frac{2 \sin \omega}{\omega} ?$

Fourier transforms - effect of shifting function

- Is this function (the orange one!) even or odd?
- Would you expect the transform to be purely real ("cosine")...
- ...or purely imaginary ("sine")?

2

Slim hat

- Yet another function. $\mathrm{f}(\mathrm{x})=1$ if $3 / 2<\mathrm{x}<5 / 2$

$$
=0 \text { otherwise. }
$$

- Fourier transform: $\tilde{f}(\omega)=\int_{3 / 2}^{5 / 2} \exp [-i \omega x] d x$

$$
\begin{aligned}
& =-\frac{1}{i \omega}\left(\exp \left[-\frac{5 i \omega}{2}\right]-\exp \left[-\frac{3 i \omega}{2}\right]\right) \\
& =\frac{2}{2} \frac{1}{2}\left(\exp \left[-\frac{3 i \omega}{2}\right]-\exp \left[-\frac{5 i \omega}{2}\right]\right)
\end{aligned}
$$

$=\frac{2}{\omega} \frac{1}{2 \mathrm{i}} \exp \left[-\frac{4 \mathrm{i} \omega}{2}\right]\left(\exp \left[\frac{\mathrm{i} \omega}{2}\right]-\exp \left[-\frac{\mathrm{i} \omega}{2}\right]\right)$
$=\frac{2}{\omega} \exp [-2 \mathrm{i} \omega] \sin \left(\frac{\omega}{2}\right)$.

4

Transform of exponential

- E.g. $(\mathrm{a}>0)$:

$$
f(x)=\left\{\begin{array}{c}
\exp [-a x] \text { if } x \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

- Fourier transform is:
$\tilde{\mathrm{f}}(\omega)=\int_{0}^{\infty} \exp [-\mathrm{ax}] \exp [-\mathrm{i} \omega \mathrm{x}] \mathrm{dx}$

$$
=\int_{0}^{\infty} \exp [-(a+i \omega) x] d x
$$

- Transform:

$$
=-\left[\frac{\exp [-(\mathrm{a}+\mathrm{i} \omega) \mathrm{x}]}{\mathrm{a}+\mathrm{i} \omega}\right]_{0}^{\infty}
$$

- Have used: $\exp [-\mathrm{ax}] \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$.

- Recovered function:

$$
=-\left[\frac{\exp [-\mathrm{ax}] \exp [-\mathrm{i} \omega \mathrm{x}]}{\mathrm{a}+\mathrm{i} \omega}\right]_{0}^{\infty}=\frac{1}{\mathrm{a}+\mathrm{i} \omega} .
$$

One more useful Fourier transform

- Look at $f(x)=\exp \left[-a^{2} x^{2}\right]$
- Calculate the transform:
$\tilde{f}(\omega)=\int_{-\infty}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{x}^{2}\right] \exp [-i \omega \mathrm{x}] \mathrm{dx}$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \exp \left[-\left(a^{2} x^{2}+i \omega x\right)\right] d x \\
& =\int_{-\infty}^{\infty} \exp \left(-a^{2}\left[\left(x+\frac{i \omega}{2 a^{2}}\right)^{2}+\frac{\omega^{2}}{4 a^{4}}\right]\right) d x \\
& =\int_{-\infty}^{\infty} \exp \left[-\frac{\omega^{2}}{4 a^{2}}\right] \exp \left(-a^{2}\left[x+\frac{i \omega}{2 a^{2}}\right]^{2}\right) d x \\
& =\exp \left[-\frac{\omega^{2}}{4 a^{2}}\right] \int_{-\infty}^{\infty} \exp \left[-a^{2} y^{2}\right] d y .
\end{aligned}
$$

- Using the result (see next slide): $\int_{-\infty}^{\infty} e^{\infty}\left[-a^{2} y^{2}\right] d y=\frac{\sqrt{\pi}}{a}$.
- We have: $\tilde{\mathrm{f}}(\omega)=\frac{\sqrt{\pi}}{\mathrm{a}} \exp \left[-\frac{\omega^{2}}{4 \mathrm{a}^{2}}\right]$.
- In this case, the Fourier transform has the same functional form (exponential) as the function.

Fourier transform of derivative

Differential equations and Fourier transforms

- One of the useful properties of Fourier transforms derives from the following result (for functions such that $\mathrm{f}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \pm \infty)$:
$\tilde{f}^{\prime}(\omega)=\int_{-\infty}^{\infty} f^{\prime}(x) \exp (-i \omega x) d x$
$=[f(x) \exp (-i \omega x)]_{-\infty}^{\infty}$
$-\int_{-\infty}^{\infty} f(x)(-i \omega) \exp (-i \omega x) d x$
$=i \omega \int_{-\infty}^{\infty} f(x) \exp (-i \omega x) d x$
$=i \omega \tilde{f}(\mathrm{x})$.
- Applying this twice gives:
$\tilde{f}^{\prime \prime}(\omega)=-\omega^{2} \tilde{f}(x)$.
- This can be used to solve some differential equations, for example: $a y^{\prime \prime}(x)+b y^{\prime}(x)+c y(x)=f(x)$.
- Take the Fourier transform of both sides:
$a \tilde{y}^{\prime \prime}(\omega)+b \tilde{y}^{\prime}(\omega)+c \tilde{y}(\omega)=\tilde{f}(\omega)$.
Hence:
$a\left(-\omega^{2}\right) \tilde{y}(\omega)+b(i \omega) \tilde{y}(\omega)+c \tilde{y}(\omega)=\tilde{f}(\omega)$
$\Rightarrow\left(-\mathrm{a} \omega^{2}+\mathrm{i} \omega \mathrm{b}+\mathrm{c}\right) \tilde{\mathrm{y}}(\omega)=\tilde{\mathrm{f}}(\omega)$
$\Rightarrow \tilde{y}(\omega)=\frac{\tilde{f}(\omega)}{-a \omega^{2}+i \omega b+c}$
- Then use inverse Fourier transform to determine $\mathrm{y}(\mathrm{x})$.

A useful integral

- Define:
$I=\int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] d x$.
- Then:
$I^{2}=\left(\int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] d x\right)^{2}$
$=\int_{-\infty}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{x}^{2}\right] \mathrm{d} x \int_{-\infty}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{y}^{2}\right] \mathrm{dy}$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-a^{2} x^{2}\right] \exp \left[-a^{2} y^{2}\right] d x d y$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-\mathrm{a}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right] \mathrm{dx} \mathrm{dy}$
- Think of this as an integral over the
(x, y) plane and convert to polar
coordinates:
$x=r \cos \theta, y=r \sin \theta$
$d x d y=r d r d \theta$.
- We then have:
$I^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} \exp \left[-a^{2} r^{2}\right] r d r d \theta$

$$
=\int_{0}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{r}^{2}\right] \mathrm{rdr} \int_{0}^{2 \pi} \mathrm{~d} \theta
$$

- Using:
$\mathrm{s}=\mathrm{r}^{2} \Rightarrow \mathrm{ds}=2 \mathrm{rdr} \Rightarrow \mathrm{dr}=\frac{\mathrm{ds}}{2 \mathrm{r}}$ we get:
Hence:
$\mathrm{I}^{2}=\int_{0}^{\infty} \exp \left[-\mathrm{a}^{2} \mathrm{~s}\right] \mathrm{r} \frac{\mathrm{ds}}{2 \mathrm{r}}[\theta]_{0}^{2 \pi}$
$=\left.\frac{1}{-2 \mathrm{a}^{2}} \exp \left[-\mathrm{a}^{2} \mathrm{~s}\right]\right|_{0} ^{\infty} \times 2 \pi$
$=\left(0-\frac{-1}{2 \mathrm{a}^{2}}\right) \times 2 \pi=\frac{\pi}{\mathrm{a}^{2}}$.
- This gives: $\mathrm{I}=\sqrt{\pi} / \mathrm{a}$.

Fourier series and transforms in physics

- The time development of many physical systems is described by partial differential equations (involving say position x and time t).
- Often we know the initial configuration, e.g. as a function of x at time zero.
- In the case of a periodic initial configuration, or one that is confined to a finite region of x, it is often useful to write this configuration as a Fourier series.
- Each mode in the series typically has simple (but different) behaviour as a function of t.
- Each mode can therefore be solved and its behaviour with t calculated.
- The behaviour of the system can then be found by summing up the solutions for the individual modes.
- Examples include heat diffusing along a metal bar or waves on strings.
- A similar procedure can be used for non-periodic configurations and those not confined to a limited x range.
- In these cases, Fourier transforms are used rather than Fourier series.
- Examples include waves travelling through space and single pulses in electronic circuits.

