Series solution of differential equations
 Legendre polynomials

- In this lecture we will:
- Use the power series method to solve general differential equations.
- Use the power series technique to solve Legendre's equation using Legendre polynomials.
- Look at some properties and applications of Legendre polynomials.

1

Power series solution of differential equations

- Substitute polynomial and its derivatives in differential equation
- $y^{\prime \prime}+y=x y^{\prime}$ so:

$$
\begin{array}{rl}
2 a_{2}+6 a_{3} & x+12 a_{4} x^{2}+\ldots \\
& +(r+2)(r+1) a_{r+2} x^{r}+\ldots
\end{array}
$$

$+a_{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots$
$+a_{r} x^{r}+\ldots$
$=x\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots\right.$

$$
\left.+(r+1) a_{r+1} x^{r}+\ldots\right)
$$

- This must hold for all values of x, so coefficients of x^{n} on LH and RH sides must be the same for all n .
- A comprehension question for this lecture:
- Write $\mathrm{x}^{3}+2 \mathrm{x}$ in terms of Legendre polynomials by using their orthonormality.
- Comparing powers of x^{0} :
$2 a_{2}+a_{0}=0 \Rightarrow a_{2}=-\frac{a_{0}}{2}$.
- Comparing powers of x^{1} :

$$
6 \mathrm{a}_{3}+\mathrm{a}_{1}=\mathrm{a}_{1} \Rightarrow \mathrm{a}_{3}=0
$$

- And powers of x^{r} :
$(\mathrm{r}+2)(\mathrm{r}+1) \mathrm{a}_{\mathrm{r}+2}+\mathrm{a}_{\mathrm{r}}=\mathrm{ra} \mathrm{a}_{\mathrm{r}}$

$$
\text { therefore } \mathrm{a}_{\mathrm{r}+2}=\frac{\mathrm{r}-1}{(\mathrm{r}+2)(\mathrm{r}+1)} \mathrm{a}_{\mathrm{r}} \text {. }
$$

- So far, we have found solutions for differential equations which have a number of specific forms.
- For general 1D differential equations, we can find a solution as a power series which will give us an approximation to the exact general solution for x close to a given value (often for x close to zero).
- For some equations, exact solutions can be found using this power series technique.
- Legendre's equation is one such case.
- Power series solution example
- Find an approximate solution to the equation:
$\frac{d^{2} y}{d^{2}}+y=x \frac{d y}{d x}$.
- Write down y as a polynomial: $y=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{r} x^{r}+\ldots$
- Calculate needed derivatives: $y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots$
$+(r+1) a_{r+1} x^{r}+$.
$y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+.$.

$$
+(\mathrm{r}+2)(\mathrm{r}+1) \mathrm{a}_{\mathrm{r}+2} \mathrm{x}^{\mathrm{r}}+\ldots
$$

2

Power series solution of differential equations

- Hence we can write down the polynomial incorporating the relationships between its coefficients: $y=a_{0}+a_{1} x-\frac{a_{0}}{2} x^{2}+0 x^{3}+\ldots$
- Further coefficients can be found using the recurrence relationship.
- What are the values of the coefficients multiplying x^{4} and x^{5} ?
- There are two arbitrary constants, a_{0} and a_{1} (this is a second order equation!).
- These can be found using the initial conditions.
- For example, if $y(0)=0$, we see $a_{0}=0$
- Using this, and differentiating the polynomial solution, we see $y^{\prime}=a_{1}+$..
- So if $\mathrm{y}^{\prime}(0)=1$, this implies $\mathrm{a}_{1}=1$.

Legendre's equation

- Legendre's equation is:
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$
- Crops up a lot in physics, in particular in quantum mechanics.
- Solve using a power series.
$\mathrm{y}=\sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}} \Rightarrow \mathrm{y}^{\prime}=\sum_{\mathrm{r}=1}^{\infty} \mathrm{ra}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}-1}$
and $y^{\prime \prime}=\sum_{r=2}^{\infty} r(r-1) a_{r} x^{r-2}$.
- Hence
$\left(1-x^{2}\right) \sum_{r=2}^{\infty} r(r-1) a_{r} x^{r-2}-2 x_{r=1}^{\infty} \sum_{r} \mathrm{ra}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}-1}$
Tidying up:
$\sum_{r=2}^{\infty} r(r-1) a_{r} x^{r-2}-\sum_{r=2}^{\infty} r(r-1) a_{r} x^{r}-2 \sum_{r=1}^{\infty} r_{r}{ }_{r} x^{r}$
- Term in $\mathrm{x}^{0}: \quad+\mathrm{n}(\mathrm{n}+1) \sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}=0$. $2 a_{2} x^{0}+n(n+1) a_{0} x^{0}=0$.
- Term in x^{1} :
$6 a_{3} x^{1}-2 a_{1} x^{1}+n(n+1) a_{1} x^{1}=0$.
- Term in x^{r} :
$(r+2)(r+1) a_{r+2} x^{r}-r(r-1) a_{r} x^{r}-2 r a_{r} x^{r}$

$$
\Rightarrow(\mathrm{r}+2)(\mathrm{r}+1) \mathrm{a}_{\mathrm{r}+2} \mathrm{x}^{\mathrm{r}}=
$$

$$
+\mathrm{n}(\mathrm{n}+1) \sum_{\mathrm{r}=0}^{\infty} \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}=0
$$

$$
(\mathrm{r}(\mathrm{r}-1)+2 \mathrm{r}-\mathrm{n}(\mathrm{n}+1)) \mathrm{a}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}}
$$

Legendre polynomials

- The first few Legendre polynomials are:
$\mathrm{P}_{0}(\mathrm{x})=1$
$P_{1}(x)=x$
$P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$
$P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$
$P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
$P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)$
$P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right)$

Legendre's equation

- From x^{0} term:
$a_{2}=-\frac{n(n+1)}{2} a_{0}$.
- From x^{1} term:
$\mathrm{a}_{3}=\frac{2-\mathrm{n}(\mathrm{n}+1)}{6} \mathrm{a}_{1}$.
- From x^{r} term:
$(\mathrm{r}+2)(\mathrm{r}+1) \mathrm{a}_{\mathrm{r}+2}=$

$$
(\mathrm{r}(\mathrm{r}+1)-\mathrm{n}(\mathrm{n}+1)) \mathrm{a}_{\mathrm{r}}
$$

$\Rightarrow \mathrm{a}_{\mathrm{r}+2}=\frac{\mathrm{r}(\mathrm{r}+1)-\mathrm{n}(\mathrm{n}+1)}{(\mathrm{r}+2)(\mathrm{r}+1)} \mathrm{a}_{\mathrm{r}}$.

- Rewriting this:
$a_{r+2}=\frac{r^{2}+r-n^{2}-n}{(r+2)(r+1)} a_{r}$

$$
=-\frac{(\mathrm{n}+\mathrm{r}+1)(\mathrm{n}-\mathrm{r})}{(\mathrm{r}+2)(\mathrm{r}+1)} \mathrm{a}_{\mathrm{r}} .
$$

- If we put $r=n$, we see $a_{n+2}=0$.
- Hence $a_{n+4}=a_{n+6}=\ldots=0$.
- So if n is even, the series starts at a_{0} and stops at a_{n}.
- If n is odd, the series starts at a_{1} and stops at a_{n}.
- In both cases, the solution is a finite Legendre polynomial.

Properties of Legendre polynomials

- Legendre polynomials have interesting properties, the most important being orthonormality:
$\left\langle\mathrm{P}_{\mathrm{m}}(\mathrm{x}), \mathrm{P}_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \int_{-1}^{1} \mathrm{P}_{\mathrm{m}}(\mathrm{x}) \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}$

$$
=0, \mathrm{~m} \neq \mathrm{n}
$$

$\left\langle\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{P}_{\mathrm{n}}(\mathrm{x})\right\rangle \equiv \int_{-1}^{1}\left[\mathrm{P}_{\mathrm{n}}(\mathrm{x})\right]^{2} \mathrm{dx}$

$$
=\frac{2}{2 n+1}
$$

- The operation \rangle is analogous to the scalar product (dot product) of two vectors.
- We can think of functions defined on the interval $[-1,1]$ as spanning an infinite vector space.
- One basis is formed by the monomials $1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3} \ldots$
- The Legendre polynomials form another.
- For example, we can write: $x^{2}=c_{0} P_{0}(x)+c_{1} P_{1}(x)+c_{2} P_{2}(x)$.
- The values of c_{0}, c_{1} and c_{2} could be found by comparing coefficients of x on each side of the above equation.
- Alternatively, the function x^{2} can be projected onto the Legendre polynomial "basis vectors" using \rangle.

Properties of Legendre polynomials

- For example:
- The Legendre polynomials can also be constructed by using their
$\left\langle\mathrm{x}^{2}, \mathrm{P}_{2}\right\rangle=\left\langle\mathrm{c}_{0} \mathrm{P}_{0}+\mathrm{c}_{1} \mathrm{P}_{1}+\mathrm{c}_{2} \mathrm{P}_{2}, \mathrm{P}_{2}\right\rangle$

$$
=\mathrm{c}_{0}\left\langle\mathrm{P}_{0}, \mathrm{P}_{2}\right\rangle+\mathrm{c}_{1}\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle+\mathrm{c}_{2}\left\langle\mathrm{P}_{2}, \mathrm{P}_{2}\right\rangle
$$ orthonormality properties...

$$
=\mathrm{c}_{2}\left\langle\mathrm{P}_{2}, \mathrm{P}_{2}\right\rangle
$$

- Cf. $\left\langle x^{2}, P_{2}\right\rangle=\int_{-1}^{1} x^{2} \frac{1}{2}\left(3 x^{2}-1\right) d x$ $=\frac{1}{2}\left[3 \frac{x^{5}}{5}-\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{4}{15}$.
...and noting that:
- $P_{n}(x)$ is of degree n.

$$
=\mathrm{c}_{2} \frac{2}{2 \times 2+1}=\frac{2}{5} \mathrm{c}_{2} .
$$

- The even $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ only contain even powers of x.
- The odd $P_{n}(x)$ only contain odd powers of x.
- E.g. suppose we know $P_{1}(x)=x$ and we want to find $P_{3}(x)$.
- Write $P_{3}(x)=a x^{3}+b x$.

Properties of Legendre polynomials

- Using the results above we can write:
$\left\langle P_{3}, P_{1}\right\rangle=\int_{-1}^{1}\left(\mathrm{ax}^{3}+\mathrm{bx}\right) \mathrm{xdx}$
$=\left[a \frac{x^{5}}{5}+b \frac{x^{3}}{3}\right]_{-1}^{1}=2\left(\frac{a}{5}+\frac{b}{3}\right)$.
- Now $\left\langle\mathrm{P}_{3}, \mathrm{P}_{1}\right\rangle=0$ so:

$$
2\left(\frac{\mathrm{a}}{5}+\frac{\mathrm{b}}{3}\right)=0 \Rightarrow \mathrm{~b}=-\frac{3}{5} \mathrm{a}
$$

- Look at:
$\left\langle\mathrm{P}_{3}, \mathrm{P}_{3}\right\rangle=\frac{2}{2 \times 3+1}=\frac{2}{7}$.
- But: $\left\langle\mathrm{P}_{3}, \mathrm{P}_{3}\right\rangle=\int_{-1}^{1}\left(\mathrm{ax}^{3}+\mathrm{bx}\right)^{2} \mathrm{dx}$ $=\left[\frac{a^{2}}{7} x^{7}+2 \frac{a b}{5} x^{5}+\frac{b^{2}}{3} x^{3}\right]_{-1}^{1}$ $=2\left(\frac{a^{2}}{7}+\frac{2 a b}{5}+\frac{b^{2}}{3}\right)=\frac{8}{25 \times 7} a^{2}$.
- Hence:
$\frac{8}{25 \times 7} \mathrm{a}^{2}=\frac{2}{7}, \mathrm{a}^{2}=\frac{25}{4}, \mathrm{a}=\frac{5}{2}$ and $\mathrm{b}=-\frac{3}{2}$.
- By convention, the highest power has a positive coefficient.
- Putting this together, we have:
$P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$.

