
08/02/19

1

Series solution of differential equations
Legendre polynomials

■ In this lecture we will:

♦ Use the power series method to 
solve general differential 
equations.

♦ Use the power series technique to 
solve Legendre’s equation using 
Legendre polynomials.

♦ Look at some properties and 
applications of Legendre 
polynomials.

■ A comprehension question for this 
lecture:

♦ Write               in terms of 
Legendre polynomials by using 
their orthonormality. 
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Power series solution of differential equations

■ So far, we have found solutions for 
differential equations which have a 
number of specific forms.

■ For general 1D differential equations, 
we can find a solution as a power 
series which will give us an 
approximation to the exact general 
solution for x close to a given value 
(often for x close to zero).

■ For some equations, exact solutions 
can be found using this power series 
technique.

■ Legendre’s equation is one such case.

■ Power series solution example.

■ Find an approximate solution to the 
equation:

■ Write down y as a polynomial:

■ Calculate needed derivatives:
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Power series solution of differential equations

■ Substitute polynomial and its 
derivatives in differential equation.

■

■ This must hold for all values of x, so 
coefficients of xn on LH and RH 
sides must be the same for all n.

■ Comparing powers of x0:

■ Comparing powers of x1:

■ And powers of xr: 
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Power series solution of differential equations

■ Hence we can write down the 
polynomial incorporating the 
relationships between its coefficients:

■ Further coefficients can be found 
using the recurrence relationship.

■ What are the values of the 
coefficients multiplying x4 and x5?

■ There are two arbitrary constants, a0

and a1 (this is a second order 
equation!).

■ These can be found using the initial 
conditions.

■ For example, if

■ Using this, and differentiating the 
polynomial solution, we see

■ So if 
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Legendre’s equation

■ Legendre’s equation is:

■ Crops up a lot in physics, in 
particular in quantum mechanics.

■ Solve using a power series.

■ Hence

■ Tidying up:

■ Term in x0:

■ Term in x1:

■ Term in xr:

2
2

2

d y dy
(1 x ) 2x n(n 1)y 0.

dxdx
    

r r 1
r r

r 0 r 1

y a x y ra x
 



 

   
r 2

r
r 2

and y r(r 1)a x .






  

2 r 2 r 1
r r

r 2 r 1

r
r

r 0

(1 x ) r(r 1)a x 2x ra x

n(n 1) a x 0.

 
 

 





  

  

 



r 2 r r
r r r

r 2 r 2 r 1

r
r

r 0

r(r 1)a x r(r 1)a x 2 ra x

n(n 1) a x 0.

  


  





   

  

  


0 0

2 02a x n(n 1)a x 0.  

1 1 1
3 1 16a x 2a x n(n 1)a x 0.   

 

r r r
r 2 r r

r
r

r
r 2

r
r

(r 2)(r 1)a x r(r 1)a x 2ra x

n(n 1)a x 0

(r 2)(r 1)a x

r(r 1) 2r n(n 1) a x





    

  

   

   
5

Legendre’s equation

■ From x0 term:

■ From x1 term:

■ From xr term:

■ Rewriting this:

■ If we put         , we see 

■ Hence 

■ So if n is even, the series starts at a0 and 
stops at an. 

■ If n is odd, the series starts at a1 and 
stops at an.

■ In both cases, the solution is a finite 
Legendre polynomial.
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Legendre polynomials

■ The first few Legendre 
polynomials are:

■ Plot of first 45 Legendre polynomials:
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Properties of Legendre polynomials

■ Legendre polynomials have 
interesting properties, the most 
important being orthonormality:

■ The operation      is analogous to 
the scalar product (dot product) 
of two vectors.

■ We can think of functions defined on 
the interval [-1, 1] as spanning an 
infinite vector space.

■ One basis is formed by the monomials
1, x, x2, x3… 

■ The Legendre polynomials form 
another.

■ For example, we can write:

■ The values of c0, c1 and c2 could be 
found by comparing coefficients of x on 
each side of the above equation.

■ Alternatively, the function x2 can be 
projected onto the Legendre polynomial 
“basis vectors” using 
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Properties of Legendre polynomials

■ For example:

■ Cf.

■ Hence  

■ The Legendre polynomials can 
also be constructed by using their 
orthonormality properties…

■ …and noting that:

♦ Pn(x) is of degree n. 

♦ The even Pn(x) only contain 
even powers of x.

♦ The odd Pn(x) only contain 
odd powers of x.

■ E.g. suppose we know                 
and we want to find P3(x).

■ Write 
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Properties of Legendre polynomials

■ Using the results above we can 
write: 

■ Now                    so: 

■ Look at: 

■ But:

■ Hence: 

■ By convention, the highest power has a 
positive coefficient.

■ Putting this together, we have: 
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