Differential equations

- In this lecture we will:
- Find out how to solve various types of inhomogeneous second order differential equation.
- Some comprehension questions for this lecture.
- Find the general solution of the equations:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=x^{2}+5 \\
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=5 e^{-3 x}
\end{aligned}
$$

Inhomogeneous second order differential equations

- Hence:
$(2 \mathrm{~A})+(2 \mathrm{Ax}+\mathrm{B})$

$$
-2\left(A x^{2}+B x+C\right)=x^{2}
$$

$\Rightarrow-2 \mathrm{Ax}^{2}+(2 \mathrm{~A}-2 \mathrm{~B}) \mathrm{x}$

$$
+2 \mathrm{~A}+\mathrm{B}-2 \mathrm{C}=\mathrm{x}^{2}
$$

- For this to hold for all x, must have: $-2 \mathrm{~A}=1$ [coefficents of x^{2}]
$2 \mathrm{~A}-2 \mathrm{~B}=0$ [coefficents of x]
and $2 \mathrm{~A}+\mathrm{B}-2 \mathrm{C}=0$ [constants]
- Hence:
$\mathrm{A}=-1 / 2,2 \mathrm{~B}=2 \mathrm{~A} \Rightarrow \mathrm{~B}=-1 / 2$ and
$\mathrm{C}=\frac{2 \mathrm{~A}+\mathrm{B}}{2}=-\frac{3}{4}$.
- Our particular solution is thus:

$$
y_{p}=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4} .
$$

- And the general solution is:
$y(x)=y_{c}(x)+y_{p}(x)$

$$
=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-2 \mathrm{x}}-\frac{1}{2} \mathrm{x}^{2}-\frac{1}{2} \mathrm{x}-\frac{3}{4} .
$$

- Note, we still have two arbitrary constants, the values of which can be determined using initial conditions.
- This illustrates how inhomogeneous differential equations can be solved if $\mathrm{f}(\mathrm{x})$ is a polynomial.
- There is one possible difficulty...

Inhomogeneous second order differential equations

- Find a particular solution to the differential equation:
$\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=5$
- Try $y_{p}=C$

$$
\Rightarrow \frac{d y_{p}}{d x}=0
$$

- Cannot substitute to work out coefficients.
- Must modify trial function to ensure we get required behaviour.
- In general, multiply y_{p} by x, e.g. if trial function $x^{2}+2 x+1$ doesn't work, try $\mathrm{x}\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)$.

6

Inhomogeneous second order differential equations

- Now consider case that $f(x)$ is of the form $\mathrm{Ae}^{\gamma \mathrm{x}}$.
- The trial function depends on the roots of the auxiliary equation.
- If $m_{1}, m_{2} \neq \gamma$, try $y_{p}=A e^{\gamma x}$.
- If $\mathrm{m}_{1}=\gamma, \mathrm{m}_{2} \neq \gamma$, try $\mathrm{y}_{\mathrm{p}}=\mathrm{Axe}^{\gamma \mathrm{x}}$.
- If $m_{1}=m_{2}=\gamma$, try $y_{p}=A x^{2} e^{\gamma x}$.
- Example:
- Find a particular solution to: $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=3 e^{-x}$
- The auxiliary equation $\mathrm{m}^{2}+2 \mathrm{~m}+1=0$
$\Rightarrow(\mathrm{m}+1)^{2}=0$ and $\mathrm{m}_{1}=\mathrm{m}_{2}=-1$

Hence we try:
$y_{p}=A x^{2} e^{-x}$
$\frac{d y_{p}}{d x}=-A x^{2} e^{-x}+2 A x e^{-x}$
$\frac{d^{2} y_{p}}{\mathrm{~d}^{2}}=$

$$
=A x^{2} e^{-x}-4 A x e^{-x}+2 A e^{-x}
$$

- Substituting gives:
$\left(A x^{2} e^{-x}-4 A x e^{-x}+2 A e^{-x}\right)+$

$$
2\left(-A x^{2} e^{-x}+2 A x e^{-x}\right)+A x^{2} e^{-x}=3 e^{-x}
$$

- Similar to previous case, compare coefficients, in this case of $\mathrm{e}^{-\mathrm{x}}, \mathrm{xe}^{-\mathrm{x}}$ and $\mathrm{x}^{2} \mathrm{e}^{-\mathrm{x}}$, to determine A .

Inhomogeneous second order differential equations

- Hence $2 \mathrm{Ae}^{-\mathrm{x}}=3 \mathrm{e}^{-\mathrm{x}}$ and $\mathrm{A}=3 / 2$.
- The solution of the complementary equation is $y_{c}=C_{1} e^{-x}+C_{2} x e^{-x}$ giving a general solution of the
inhomogeneous equation
$y=C_{1} e^{-x}+C_{2} x e^{-x}+\frac{3}{2} x^{2} e^{-x}$.

