

Homogeneous second order differential equations

- Consider various possibilities for the solutions of the auxiliary equation.
- If we have distinct roots, $y_1 = e^{m_1 x}$ and $y_2 = e^{m_2 x}$ are linearly independent solutions of our differential equation.
- The functions $y_1(x)$ and $y_2(x)$ are linearly independent if one is not just a multiple of the other, that is: $y_2(x) \neq ky_1(x)$.
- Hence, by the superposition principle, a general solution is: $\mathbf{y}(\mathbf{x}) = \mathbf{A}\mathbf{e}^{\mathbf{m}_1\mathbf{x}} + \mathbf{B}\mathbf{e}^{\mathbf{m}_2\mathbf{x}}.$

- Example:
- Find a general solution of:
- $\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2} + 5\frac{\mathrm{dy}}{\mathrm{dx}} 6\mathrm{y} = 0.$
- The auxiliary equation is: $m^2 + 5m - 6 = 0$
 - $\Rightarrow (m+6)(m-1) = 0$
 - \Rightarrow m₁ = 1 and m₂ = -6.
- Hence a general solution to the equation is: $\mathbf{y}(\mathbf{x}) = \mathbf{A}\mathbf{e}^{\mathbf{x}} + \mathbf{B}\mathbf{e}^{-6\mathbf{x}}.$

2

Homogeneous second order differential equations Another example, solve the initial A general solution is $\bar{y(x)} = Ae^{(-1+\sqrt{2})x} + Be^{(-1-\sqrt{2})x}.$ value problem $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - y = 0$ The initial conditions can be used to determine A and B: y(0) = 0 $v(0) = Ae^{0} + Be^{0}$ $\Rightarrow 0 = A + B \text{ or } A = -B$ $\frac{dy(0)}{dx} = -1 \text{ or } y'(0) = -1.$ $\frac{dy}{dx} = A(-1+\sqrt{2})e^{(-1+\sqrt{2})x} + B(-1-\sqrt{2})e^{(-1-\sqrt{2})x}$ The auxiliary equation is: $m^{2} + 2m - 1 = 0 \qquad \qquad \frac{dy(0)}{dx} = (-1 + \sqrt{2})A + (-1 - \sqrt{2})$ $\frac{\mathrm{d}\mathbf{y}(0)}{\mathrm{d}\mathbf{x}} = \left(-1 + \sqrt{2}\right)\mathbf{A} + \left(-1 - \sqrt{2}\right)\mathbf{B}$ and $m_2 = \frac{-2 - \sqrt{8}}{2} = -1 - \sqrt{2}$. $\Rightarrow -1 = 2\sqrt{2}A$ or $A = -\frac{1}{2\sqrt{2}}$. 5

Example:

General solution therefore:

• What if the auxiliary equation has

 $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$?

complex conjugate roots

 $y = Ae^{(\alpha + i\beta)x} + Be^{(\alpha - i\beta)x}$

 $= e^{\alpha x} \left(A e^{i\beta x} + B e^{-i\beta x} \right)$

 $= e^{\alpha x} \begin{pmatrix} A(\cos(\beta x) + i\sin(\beta x)) \\ + B(\cos(-\beta x) + i\sin(-\beta x)) \end{pmatrix}$

 $=e^{\alpha x} \begin{pmatrix} (A+B)\cos(\beta x) \\ +i(A-B)\sin(\beta x) \end{pmatrix}.$

Then:

 $\mathbf{v}(\mathbf{x}) = \mathbf{A}\mathbf{e}^{-2\mathbf{x}} + \mathbf{B}\mathbf{x}\mathbf{e}^{-2\mathbf{x}}$