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Differential equations

■ In this lecture we will:

♦ Look at second order 
homogeneous differential 
equations.

♦ Introduce the auxiliary equation 
and determine its roots.

♦ Find out how to solve the 
homogeneous second order 
differential equation in the case 
that the roots of the auxiliary 
equation are:

• Real and different.

• The same.

• Complex conjugate. 

■ Some comprehension questions for 
this lecture.

♦ Write down the general form of a 
homogeneous second order 
differential equation with 
constant coefficients.

♦ Solve the initial value problem:
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Homogeneous second order differential equations

■ Consider second order homogeneous 
differential equations of the form:

■ The coefficients a, b and c are all 
constants.

■ Try to find a solution of the form 

■ Differentiating this gives:

■ Substituting into the original equation 
we have:

■ Now emx cannot be zero, so:

■ This is called the auxiliary equation.

■ The above implies that y = emx is a 
solution of the differential equation 
iff (if and only if) m takes one of the 
values:
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Homogeneous second order differential equations

■ When the discriminant
m1 and m2 are real and distinct.

■ When                       the roots are real 
and equal.  

■ When                        the roots are 
complex conjugate numbers. 

■ The principle of superposition:

■ Supposing we have two solutions of 
our homogeneous second order 
differential equation, y1(x) and y2(x).

■ The sum C1y1(x) + C2y2(x) is also a 
solution of the equation.

■ Prove this:2b 4ac 0, 
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Homogeneous second order differential equations

■ Consider various possibilities for the 
solutions of the auxiliary equation.

■ If we have distinct roots,                 
and                 are linearly 
independent solutions of our 
differential equation.

■ The functions y1(x) and y2(x) are 
linearly independent if one is not just 
a multiple of the other, that is:

■ Hence, by the superposition 
principle, a general solution is: 

■ Example:

■ Find a general solution of:

■ The auxiliary equation is:

■ Hence a general solution to the 
equation is: 

1m x
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1 2m x m xy(x) Ae Be . 
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Homogeneous second order differential equations

■ Another example, solve the initial 
value problem

■ The auxiliary equation is:

■ A general solution is

■ The initial conditions can be used to 
determine A and B:
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Homogeneous second order differential equations

■ Rewriting:

■ Putting this together:

■ If the roots of auxiliary equation are  
the same (m), we can use y = emx and 
y = xemx as two linearly independent 
solutions of the differential equation.

■ Example:

■ Find a general solution of:

■ Auxiliary equation:
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Homogeneous second order differential equations

■ General solution therefore:

■ What if the auxiliary equation has 
complex conjugate roots

■ Then:

■ Writing P = A + B and Q = i(A – B), 
we then have the general solution: 

■ Example:

■ Find the general solution of:

■ Auxiliary equation:

2x 2xy(x) Ae Bxe  

1 2m i and m i ?       
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 xy(x) e Pcos( x) Qsin( x) .   
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Homogeneous second order differential equations

■ So, with

■ Another example:

■ Solve the initial value problem:

■ Auxiliary equation:

■ Hence

■ This gives:  

■ Using the initial conditions we have:

■ The required solution is therefore:

1 and 3:    
x xy Pe cos 3x Qe sin 3x.  
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