Differential equations

■ In this lecture we will:

- Look at second order homogeneous differential equations.
- Introduce the auxiliary equation and determine its roots.
- Find out how to solve the homogeneous second order differential equation in the case that the roots of the auxiliary equation are:
- Real and different.
- The same.
- Complex conjugate

Homogeneous second order differential equations

- When the discriminant $b^{2}-4 a c>0$ m_{1} and m_{2} are real and distinct.
- When $\mathrm{b}^{2}-4 \mathrm{ac}=0$, the roots are real and equal.
- When $b^{2}-4 a c<0$, the roots are complex conjugate numbers.
- The principle of superposition:
- Supposing we have two solutions of our homogeneous second order differential equation, $y_{1}(x)$ and $y_{2}(x)$.
- The sum $C_{1} y_{1}(x)+C_{2} y_{2}(x)$ is also a solution of the equation.
- Some comprehension questions for this lecture.
- Write down the general form of a homogeneous second order differential equation with constant coefficients.
- Solve the initial value problem: $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$, with $y(1)=1$ and $\frac{d y(1)}{d x}=1$
- Prove this:
$a \frac{d^{2}}{d x^{2}}\left(C_{1} y_{1}+C_{2} y_{2}\right)+$

$$
\mathrm{b} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{C}_{1} \mathrm{y}_{1}+\mathrm{C}_{2} \mathrm{y}_{2}\right)+\mathrm{c}\left(\mathrm{C}_{1} \mathrm{y}_{1}+\mathrm{C}_{2} \mathrm{y}_{2}\right)
$$

$$
=\mathrm{aC}_{1} \frac{\mathrm{~d}^{2} \mathrm{y}_{1}}{\mathrm{dx}^{2}}+\mathrm{aC}_{2} \frac{\mathrm{~d}^{2} \mathrm{y}_{2}}{\mathrm{dx}^{2}}+
$$

$$
\mathrm{bC}_{1} \frac{\mathrm{dy}_{1}}{\mathrm{dx}}+\mathrm{bC}_{2} \frac{\mathrm{dy}_{2}}{\mathrm{dx}}+\mathrm{cC}_{1} \mathrm{y}_{1}+\mathrm{cC}_{2} \mathrm{y}_{2}
$$

$$
=C_{1}\left(a \frac{d^{2} y_{1}}{d x^{2}}+b \frac{d y_{1}}{d x}+c y_{1}\right)+
$$

$$
C_{2}\left(a \frac{d^{2} y_{2}}{d x^{2}}+b \frac{d y_{2}}{d x}+c y_{2}\right)
$$

Homogeneous second order differential equations

- Consider second order homogeneous differential equations of the form:

$$
\mathrm{a} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\mathrm{b} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{cy}=0 .
$$

- The coefficients a, b and c are all constants.
- Try to find a solution of the form $y=e^{m x}$.
- Differentiating this gives:
$\frac{d y}{d x}=m e^{m x}$ and $\frac{d^{2} y}{d x^{2}}=m^{2} e^{m x}$.
- Substituting into the original equation we have:
$\mathrm{am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{bme}^{\mathrm{mx}}+\mathrm{ce}{ }^{\mathrm{mx}}=0$,
or $\mathrm{e}^{\mathrm{mx}}\left(\mathrm{am}^{2}+\mathrm{bm}+\mathrm{c}\right)=0$
- Now e^{mx} cannot be zero, so:
$\mathrm{am}^{2}+\mathrm{bm}+\mathrm{c}=0$.
- This is called the auxiliary equation.
- The above implies that $y=e^{m x}$ is a solution of the differential equation iff (if and only if) m takes one of the values:

$$
\begin{aligned}
& m_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& m_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

Homogeneous second order differential equations

- Consider various possibilities for the solutions of the auxiliary equation.
- If we have distinct roots, $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent solutions of our differential equation.
- The functions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent if one is not just a multiple of the other, that is: $y_{2}(x) \neq \mathrm{ky}_{1}(\mathrm{x})$.
- Hence, by the superposition principle, a general solution is: $y(x)=A e^{m_{1} x}+B e^{m_{2} x}$.
- Example:
- Find a general solution of: $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-6 y=0$.
- The auxiliary equation is:
$\mathrm{m}^{2}+5 \mathrm{~m}-6=0$
$\Rightarrow(\mathrm{m}+6)(\mathrm{m}-1)=0$
$\Rightarrow \mathrm{m}_{1}=1$ and $\mathrm{m}_{2}=-6$.
- Hence a general solution to the equation is:
$y(x)=A^{x}+B^{-6 x}$.

Homogeneous second order differential equations

- Another example, solve the initial value problem
$\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-y=0$

$$
y(0)=0
$$

$$
\frac{d y(0)}{d x}=-1 \text { or } y^{\prime}(0)=-1
$$

- The auxiliary equation is:
$m^{2}+2 m-1=0$
$\Rightarrow \mathrm{m}_{1}=\frac{-2+\sqrt{8}}{2}=-1+\sqrt{2}$
and $m_{2}=\frac{-2-\sqrt{8}}{2}=-1-\sqrt{2}$.

A general solution is
$y(x)=A e^{(-1+\sqrt{2}) x}+B e^{(-1-\sqrt{2}) x}$.

- The initial conditions can be used to determine A and B :
$y(0)=A e^{0}+\mathrm{Be}^{0}$
$\Rightarrow 0=\mathrm{A}+\mathrm{B}$ or $\mathrm{A}=-\mathrm{B}$ $\frac{d y}{d x}=A(-1+\sqrt{2}) e^{(-1+\sqrt{2}) x}+B(-1-\sqrt{2}) e^{(-1-\sqrt{2}) \mathrm{x}}$ $\frac{d y(0)}{d x}=(-1+\sqrt{2}) A+(-1-\sqrt{2}) B$
$-1=(-1+\sqrt{2}) \mathrm{A}-(-1-\sqrt{2}) \mathrm{A}$
$\Rightarrow-1=2 \sqrt{2} \mathrm{~A}$ or $\mathrm{A}=-\frac{1}{2 \sqrt{2}}$.

Homogeneous second order differential equations

- General solution therefore: $y(x)=A e^{-2 x}+B x e^{-2 x}$
- What if the auxiliary equation has complex conjugate roots $\mathrm{m}_{1}=\alpha+\mathrm{i} \beta$ and $\mathrm{m}_{2}=\alpha-\mathrm{i} \beta$?
- Then:
$y=A e^{(\alpha+i \beta) x}+B e^{(\alpha-i \beta) x}$
$=e^{\alpha x}\left(A e^{i \beta x}+B e^{-i \beta x}\right)$
$=e^{\alpha x}\binom{A(\cos (\beta x)+i \sin (\beta x))}{+B(\cos (-\beta x)+i \sin (-\beta x))}$
$=e^{\alpha x}\binom{(A+B) \cos (\beta x)}{+i(A-B) \sin (\beta x)}$.
- Writing $\mathrm{P}=\mathrm{A}+\mathrm{B}$ and $\mathrm{Q}=\mathrm{i}(\mathrm{A}-\mathrm{B})$, we then have the general solution: $y(x)=e^{\alpha x}(P \cos (\beta x)+Q \sin (\beta x))$.
- Example:
- Find the general solution of: $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y=0$.
- Auxiliary equation:
$\mathrm{m}^{2}+2 \mathrm{~m}+4=0$
$\mathrm{m}_{1}=\frac{-2+\sqrt{4-16}}{2}, \mathrm{~m}_{2}=\frac{-2-\sqrt{4-16}}{2}$
$\Rightarrow \mathrm{m}_{1}=-1+\sqrt{-3}, \mathrm{~m}_{2}=-1-\sqrt{-3}$
or $\mathrm{m}_{1}=-1+\mathrm{i} \sqrt{3}$ and $\mathrm{m}_{2}=-1-\mathrm{i} \sqrt{3}$.

Homogeneous second order differential equations

- Rewriting:

$$
A=-\frac{\sqrt{2}}{4} \text { and } B=\frac{\sqrt{2}}{4}
$$

- Putting this together:

$$
y(x)=-\frac{\sqrt{2}}{4} e^{(-1+\sqrt{2}) x}+\frac{\sqrt{2}}{4} e^{(-1-\sqrt{2}) x}
$$

- If the roots of auxiliary equation are the same (m), we can use $y=e^{m x}$ and $y=x e^{m x}$ as two linearly independent solutions of the differential equation.
- Example:
- Find a general solution of:
$\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0$.
- Auxiliary equation:
$\mathrm{m}^{2}+4 \mathrm{~m}+4=0$
$\Rightarrow(\mathrm{m}+2)^{2}=0$
$\mathrm{m}_{1}=\mathrm{m}_{2}=-2$.

Homogeneous second order differential equations

- So, with $\alpha=-1$ and $\beta=\sqrt{3}$: $y=P e^{-x} \cos \sqrt{3} x+Q e^{-x} \sin \sqrt{3} x$.
- Another example:
- Solve the initial value problem: $\frac{d^{2} y}{d x^{2}}+4 y=0, y(0)=1, \frac{d y(0)}{d x}=0$.
- Using the initial conditions we have: $y(0)=P=1$,
$\frac{d y(0)}{d x}=2 Q=0$, so $Q=0$
- The required solution is therefore: $y(x)=\cos 2 x$.
- Auxiliary equation: $\mathrm{m}^{2}+4=0$ $\Rightarrow \mathrm{m}_{1}=2 \mathrm{i}, \mathrm{m}_{2}=-2 \mathrm{i}$.
- Hence $\alpha=0, \beta=2$.
- This gives:
$\mathrm{y}=\mathrm{P} \cos 2 \mathrm{x}+\mathrm{Q} \sin 2 \mathrm{x}$,
$\frac{d y}{d x}=-2 P \sin 2 x+2 Q \cos 2 x$.

