Differential equations

- In this lecture we will:
- Introduce differential equations.
- Look at how differential equations can be classified.
- Learn how to find solutions to ordinary first order differential equations.
- Some comprehension questions for this lecture.
- What is the order of the following equation:

$$
7 \frac{d^{2} y}{d x^{2}}+2 y+3=0
$$

- Is it linear? Is it homogeneous?
- The number of radioactive decays per unit time in a sample is proportional to the number, N , of nuclei that could potentially decay, i.e. it obeys the equation:

$$
\frac{\mathrm{dN}}{\mathrm{dt}}=-\lambda \mathrm{N}
$$

Solve this equation.

Differential equations

■ We will work in 1D in this section!
■ "Normal" equations relate an independent variable (often labelled x) to a dependent variable (often y).

- E.g. $y=\cos x-1 / 3$.
- Solutions of these equations (e.g. for $\mathrm{y}=0$) are typically a number, or a collection of numbers.
- Ordinary differential equations (ODEs) relate an independent variable (x) to a dependent variable (y) and one or more of its derivatives with respect to the independent variable.
- Example $\frac{d^{3} y}{d x^{3}}+\sin x \frac{d y}{d x}=5 x^{2}$.
- The solution of a differential equation is typically one or more functions which relate the dependent variable to the independent variable.
- DEs are the natural way of representing many physical laws and effects, e.g. Newton's second law, Maxwell's equations (partial derivatives, 3D!), radioactivity, etc.
- The order of a differential equation is the highest derivative that appears in the equation.
- E.g. $\frac{d y}{d x}-y=0$ is $1^{\text {st }}$ order.

$$
x^{2} \frac{d^{5} y}{d x^{5}}-\sin x \frac{d y}{d x}=0 \text { is } 5^{\text {th }} \text { order. }
$$

Solving first order differential equations

- Most obvious is the solution to equations of the form:

$$
\frac{d y}{d x}=f(x)
$$

- All we need to do is take the "antiderivative" (integral) of both sides: $\int \frac{d y}{d x} d x=\int f(x) d x$ $\Rightarrow y=\int f(x) d x$
- Note, this DE may also be written... $d y=f(x) d x$
- ...and its solution:
$\int d y=\int f(x) d x$
$\Rightarrow \mathrm{y}=\int \mathrm{f}(\mathrm{x}) \mathrm{dx}$
- This works as long as we can integrate $f(x)$.
- There are many functions for which there is no exact and closed form for the integral!
- Also easy to solve are equations like: $\frac{d y}{d x}=g(y)$ or $d y=g(y) d x$

$$
\Rightarrow \int d x=\int \frac{1}{g(y)} d y
$$

- ODEs are homogeneous if each term contains either the dependent variable (y) or one of its derivatives.
- E.g. $\frac{d y}{d x}=A y$ is homogeneous.
$A \frac{d y}{d x}+B y+C=0$ is inhomogeneous.
- Classify these equations:
- $\frac{d y}{d x}=k y+x^{2}$
- $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dt}^{2}}+\omega^{2} \mathrm{t}=0$
- $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{x}^{2}+1$
- $\frac{\mathrm{d}^{2} u}{\mathrm{dx}^{2}}-x \frac{d u}{d x}+u=0$
- $\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=17 \mathrm{u}$
- $\frac{d^{2} u}{d x^{2}}-x\left(\frac{d u}{d x}\right)^{2}+u=17 u-32$

Solving first order DEs

- An example:
$\frac{d y}{d x}=6 x^{2}-2 x+5$

$$
y=\int 6 x^{2}-2 x+5 d x
$$

$$
=2 x^{3}-x^{2}+5 x+c
$$

- Note constant of integration, c !
- Another example:
$\frac{d y}{d x}=y \Rightarrow d y=y d x$
and $\int \frac{d y}{y}=\int d x$

Solving first order DEs -

 separating variables- Integrate and add constant:
$\ln \mathrm{y}=\mathrm{x}+\mathrm{c}$ or $\mathrm{y}=\exp (\mathrm{x}+\mathrm{c})$
Hence $\mathrm{y}=\exp (\mathrm{x}) \exp (\mathrm{c})=\mathrm{A} \exp (\mathrm{x})$

Solving first order DEs - substitution

- Now set $\mathrm{t}=1 / \mathrm{x}$:

$$
\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u}=\mathrm{f}\left(\frac{1}{\mathrm{x}} \mathrm{x}, \frac{1}{\mathrm{x}} \mathrm{ux}\right)=\mathrm{f}(1, \mathrm{u})
$$

- An example: $\frac{d y}{d x}=\frac{x+3 y}{2 x}$
- Substitute $\mathrm{y}=\mathrm{ux}:$
- Can separate the variables to solve

$$
\begin{aligned}
\mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} & =\mathrm{f}(1, \mathrm{u}) \\
\frac{\mathrm{du}}{\mathrm{dx}} & =\frac{\mathrm{f}(1, \mathrm{u})-\mathrm{u}}{\mathrm{x}} \\
\int \frac{\mathrm{du}}{\mathrm{f}(1, \mathrm{u})-\mathrm{u}} & =\int \frac{\mathrm{dx}}{\mathrm{x}} .
\end{aligned}
$$

$$
x \frac{d u}{d x}+u=\frac{x+3 u x}{2 x}
$$

$$
\Rightarrow \mathrm{x} \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{x}+3 \mathrm{ux}}{2 \mathrm{x}}-\mathrm{u}=\frac{1}{2}+\frac{\mathrm{u}}{2}
$$

$$
\Rightarrow \int \frac{2}{1+u} d u=\int \frac{d x}{x}
$$

$$
\Rightarrow 2 \ln (1+u)=\ln x+c
$$

$$
\text { Using } u=\frac{y}{x}
$$

$$
2 \ln \left(1+\frac{y}{x}\right)=\ln x+c
$$

- Equations of the form... $\frac{d y}{d x}=f(x) g(y)$
- ...can be solved by separating the variables:
$\frac{d y}{g(y)}=f(x) d x$
$\Rightarrow \int \frac{d y}{g(y)}=\int f(x) d x$
- Equation might need simplification to show that it is separable.

Solving first order DEs

- separating variables
- An example:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{2}+x y^{2}}{x^{2} y-x^{2}} \\
& =\frac{y^{2}(1+x)}{x^{2}(y-1)} \\
& =\frac{1+x}{x^{2}} \frac{y^{2}}{(y-1)}
\end{aligned}
$$

- Hence:
$\int \frac{y-1}{y^{2}} d y=\int \frac{1+x}{x^{2}} d x$
$\int \frac{1}{y}-y^{-2} d y=\int x^{-2}+\frac{1}{x} d x$
$\ln \mathrm{y}+\frac{1}{\mathrm{y}}=-\frac{1}{\mathrm{x}}+\ln \mathrm{x}+\mathrm{c}$

Solving first order DEs

 - substitution- All equations of the form. $\frac{d y}{d x}=f(x, y)$
- ...in which $f(x, y)$ is a homogeneous function of degree zero, that is $f(t x, t y)=f(x, y)$, can be solved by first substituting $y(x)=u(x) \times x$.
- We then have (differentiate product): $\frac{d y}{d x}=\frac{d(u x)}{d x}=x \frac{d u}{d x}+u$
- Substitute in the above equation: $x \frac{d u}{d x}+u=f(x, u x)$

Solving first order DEs - integrating factor

- A further method is using an integrating factor.
- Applies to equations of the form $\frac{d y}{d x}+y P(x)=Q(x)$
- The integrating factor (IF) is $\exp \left(\int \mathrm{P}(\mathrm{x}) \mathrm{dx}\right)$.
- Multiply equation by IF:

$$
e^{\int P(x) d x}\left(\frac{d y}{d x}+y P(x)\right)=e^{\int P(x) d x} Q(x)
$$

- Expanding:
$e^{\int P d x} \frac{d y}{d x}+e^{\int P d x} y P(x)=e^{\int P d x} Q(x)$
- Hence (integrating w.r.t. x):
$\int e^{\int P d x} d y+\int e^{\int P d x} y P d x=\int e^{\int P d x} Q d x$
- Integrate first term by parts, i.e. use $\int u d v=u v-\int v d u$.

$$
\int e^{\int P d x} d y=e^{\int P d x} y-\int y d\left(e^{\int P d x}\right)
$$

$$
=y e^{\int P d x}-\int y P e^{\int P d x} d x
$$

- Inserting back into top equation:
$y e^{\int P d x}-\int y P e^{\int P d x} d x$

$$
+\int \mathrm{e}^{\int \mathrm{p}_{\mathrm{pdx}}} \mathrm{yPdx}=\int \mathrm{e}^{\mathrm{f}^{\mathrm{pdx}}} \mathrm{dxx}
$$

Solving first order DEs - integrating factor

- Hence we have:
$y e^{\int \mathrm{Pdx}}=\int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{Qdx}$
$\Rightarrow \mathrm{y}=\mathrm{e}^{-\int \mathrm{Pdx}} \int \mathrm{e}^{\int \mathrm{Pdx}} \mathrm{Qdx}$
- An example:
$\frac{d y}{d x}+5 y=e^{2 x}$
- IF is $\mathrm{e}^{\int 5 \mathrm{dx}}=\mathrm{e}^{5 \mathrm{x}}$.
- Multiply through by IF:
$e^{5 x} \frac{d y}{d x}+5 y e^{5 x}=e^{2 x} e^{5 x}$
- The LHS is:
$\frac{d}{d x} y e^{5 x}=5 y e^{5 x}+e^{5 x} \frac{d y}{d x}$
- So we see that we can solve this equation using
$\frac{d}{d x} y e^{5 x}=e^{2 x} e^{5 x}$

$$
y e^{5 x}=\int e^{7 x} d x
$$

- Hence:

$$
=\frac{\mathrm{e}^{7 \mathrm{x}}}{7}+\mathrm{c}
$$

$$
y=\frac{e^{7 x-5 x}}{7}+c e^{-5 x}=\frac{e^{2 x}}{7}+\mathrm{ce}^{-5 x}
$$

Integrating factors - alternative derivation

- If have equation

$$
\begin{aligned}
& a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x) \\
& \text { such that } \\
& \begin{aligned}
\frac{d}{d x} a_{1} y & =a_{1} \frac{d y}{d x}+y \frac{d a_{1}}{d x} \\
& =a_{1} \frac{d y}{d x}+a_{0} y
\end{aligned}
\end{aligned}
$$

- That is, if $\frac{d a_{1}}{d x}=a_{0}$.
- Then can rewrite and easily solve:
$\frac{d}{d x} a_{1}(x) y=b(x) \Rightarrow a_{1}(x) y=\int b(x) d x$
and $y=\frac{1}{a_{1}(x)} \int b(x) d x$.
- To solve more general equations $\frac{d y}{d x}+P(x) y=Q(x)$.
- Look for an integrating factor $\mathrm{I}(\mathrm{x})$ which equation can be multiplied by...

$$
\mathrm{I}(\mathrm{x}) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{I}(\mathrm{x}) \mathrm{P}(\mathrm{x}) \mathrm{y}=\mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x})
$$

- Choose this so that: $\frac{d}{d x} I(x)=I(x) P(x) y$
- To see why, cf. condition
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{a}_{1}(\mathrm{x})=\mathrm{a}_{0}(\mathrm{x})$

9

Integrating factors - alternative derivation

- But this is a separable equation:
$\frac{d I(x)}{I(x)}=P(x) d x$
- Our DE now becomes
$\frac{d}{d x} \mathrm{I}(\mathrm{x}) \mathrm{y}=\mathrm{I}(\mathrm{x}) \mathrm{Q}(\mathrm{x})$
$\int \frac{d I(x)}{I(x)}=\int P(x) d x$
$\ln (\mathrm{I}(\mathrm{x}))=\int \mathrm{P}(\mathrm{x}) \mathrm{dx}$
$I(x)=\exp \left(\int P(x) d x\right)$
Which can be integrated to give:
$I(x) y=\int I(x) Q(x) d x$
$\Rightarrow y=\frac{1}{I(x)} \int I(x) Q(x) d x$
or $y=e^{-\int P(x) d x} \int e^{\int P(x) d x} Q(x) d x$

