Vector calculus

- In this lecture we will:
- Sketch out how we can derive a potential from a field using line integrals.
- Do an example to check it works!
- Look at a physical example: deriving the electric potential from the electric field.
- Mention a caveat: there are some fields that cannot be derived from potentials.
- Some comprehension questions for this lecture.
- What is the potential associated with the field:

$$
\begin{aligned}
& \text { with the field: } \\
& \stackrel{\rightharpoonup}{\mathrm{E}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}
y z+2 x y \\
x^{2}+x z+z^{2} \\
x y+2 y z
\end{array}\right) ?
\end{aligned}
$$

Electric potential from electric field

- Electric field due to point charge given by:
$\stackrel{\rightharpoonup}{\mathrm{E}}=\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}\left(\begin{array}{l}\frac{\mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}} \\ \frac{\mathrm{y}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}} \\ \frac{\mathrm{z}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}}\end{array}\right)$.
- Write $\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}=K$.

- Using line integral method:
$\phi=\phi_{0}+\int \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}$
$=\phi_{0}+\int_{0}^{1} E_{x} \frac{d x}{d t} d t+\int_{0}^{1} E_{y} \frac{d y}{d t} d t+\int_{0}^{1} E_{z} \frac{d z}{d t} d t$
with $\vec{r}(t)=\left(\begin{array}{l}x t \\ y t \\ z t\end{array}\right)$ and taking the path
to be from $t=0$ to $t=1$ as before.

5

Electric potential from electric field

- Look at E_{x} integral:

$$
\begin{aligned}
\int_{0}^{1} E_{x} \frac{d x}{d t} d t & =K \int_{0}^{1} \frac{x t}{\left((x t)^{2}+(y t)^{2}+(z t)^{2}\right)^{\frac{3}{2}}} x d \\
& =K \frac{x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{1} \frac{t}{\left(t^{2}\right)^{\frac{3}{2}}} d t \\
& =K \frac{x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{1} \frac{1}{t^{2}} d t \\
& =\left.K \frac{x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \frac{-1}{t}\right|_{0} ^{1} .
\end{aligned}
$$

- There is a problem, can't evaluate one limit of integral: $\overrightarrow{\mathrm{E}}$ infinite at origin!

6

Caveat: fields that are not derivable from potentials

- Recall from lecture 6: $\nabla \times(\nabla \phi)=0$.
- Hence, a vector field derived from a potential, e.g. $\overrightarrow{\mathrm{E}}=\nabla \phi$, must always satisfy $\nabla \times \overrightarrow{\mathrm{E}}=0$.
- Conversely, a field for which the curl is not zero cannot be derived from a potential.

$$
+x y z \frac{\mathrm{t}^{3}}{3}+\left.2 \mathrm{z}^{2} \frac{\mathrm{t}^{2}}{2}\right|_{0} ^{1}
$$

- Using our prescription..

$$
+\mathrm{xyz} \int_{0}^{1} \mathrm{t}^{2} \mathrm{dt}+2 \mathrm{z}^{2} \int_{0}^{1} \mathrm{tdt}
$$

$$
=\phi_{0}+x y z \frac{t^{3}}{3}+\left.\left(x y z-3 y^{2} z\right) \frac{t^{3}}{3}\right|_{0} ^{1}
$$

- E.g. $\stackrel{\rightharpoonup}{\mathrm{F}}=\left(\begin{array}{c}y z \\ x z-3 y z \\ x y+2 z\end{array}\right)$.

$$
\Rightarrow \phi=\phi_{0}+x y z-y^{2} z+z^{2}
$$

$$
\begin{aligned}
\phi=\phi_{0} & +\int_{0}^{1} \mathrm{ytztxdt}+\int_{0}^{1}(\mathrm{xtzt}-3 \mathrm{yt} \mathrm{zt}) \mathrm{ydt} \\
& +\int_{0}^{1}(\mathrm{xtyt}+2 \mathrm{zt}) \mathrm{zdt}
\end{aligned}
$$

- Now calculate field:
$\nabla\left(x y z-y^{2} z+z^{2}\right)=\left(\begin{array}{c}y z \\ x z-2 y z \\ x y-y^{2}+2 z\end{array}\right) \neq \overrightarrow{\mathrm{F}}$.
- One solution is to change the path.
- Move from point at infinity to position ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) then have:

$$
\begin{aligned}
\int_{\infty}^{1} E_{x} \frac{d x}{d t} d t & =\left.K \frac{x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \frac{-1}{t}\right|_{\infty} ^{1} \\
& =-K \frac{x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

- Repeat for E_{y} and E_{z} and add results: $\phi=\phi_{\infty}-K \frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}}=-\frac{\mathrm{q}}{4 \pi \varepsilon_{0}} \frac{1}{\mathrm{r}}$.
- Note minus sign, not present when "physics convention" used, we have decided $\stackrel{\rightharpoonup}{E}=-\nabla \phi$ not $\vec{E}=\nabla \phi$.
6

