Vector calculus

- In this lecture we will:
- Define the curl of a vector field.
- Look at some examples to try and gain some insight into what the curl represents.
- Discuss the curl of the electric and magnetic fields.
- Some comprehension questions for this lecture.
- Indicate where the curl will be positive below.

- Calculate the curl of the field: $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{lll}\mathrm{y} & \mathrm{xy} & 0\end{array}\right)$

1

Curl of vector field

- Plot the x and y components of $\overrightarrow{\mathrm{F}}$ as a vector field and the curl as a contour plot (shaded):

- What does the curl tell us about the field?
- Again, the name gives as a hint!
- (A further hint is that the curl of a field is sometimes called the rotation.)
- See that the curl is positive where a small object "dropped into the field" would rotate in an anticlockwise direction and negative where it would rotate in a clockwise direction.

Curl of a vector field

- The curl of a vector field is defined by the equation:

$$
\begin{aligned}
\nabla \times \overrightarrow{\mathrm{E}}(x, y, z) & =\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathrm{E}_{\mathrm{x}} & \mathrm{E}_{\mathrm{y}} & \mathrm{E}_{\mathrm{z}}
\end{array}\right| \\
& =\left(\begin{array}{l}
\frac{\partial}{\partial y} \mathrm{E}_{\mathrm{z}}-\frac{\partial}{\partial z} \mathrm{E}_{\mathrm{y}} \\
\frac{\partial}{\partial z} \mathrm{E}_{\mathrm{x}}-\frac{\partial}{\partial x} \mathrm{E}_{\mathrm{z}} \\
\frac{\partial}{\partial x} \mathrm{E}_{\mathrm{y}}-\frac{\partial}{\partial y} \mathrm{E}_{\mathrm{x}}
\end{array}\right)
\end{aligned}
$$

- The curl of a vector field is a vector field.
- Can think of curl as cross product of ∇ operator and vector.
- Look at an example (with z component zero so we can plot it!).
- $\overrightarrow{\mathrm{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\mathrm{y} \\ \mathrm{x}^{2} \\ 0\end{array}\right)$
$\left(\begin{array}{l}\frac{\partial}{\partial y} F_{z}-\frac{\partial}{\partial z} F_{y} \\ \frac{\partial}{\partial z} F_{x}-\frac{\partial}{\partial x} F_{z} \\ \frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 2 x-1\end{array}\right)$

2

Curl of vector field

- Now define field which has constant angular velocity and look at its curl.
- Use $\mathrm{v}=\mathrm{r} \omega$ and set $\omega=1$, implies:
- $\overrightarrow{\mathrm{v}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}-\mathrm{y} \\ \mathrm{x} \\ 0\end{array}\right)$.
- Hence $\nabla \times \overrightarrow{\mathrm{v}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$.
- Magnitude of curl is twice the angular velocity.
- Direction of curl is that of axis about which rotation occurs.

Calculate a curl

- Calculate the curl of the field:
$\vec{F}(x, y, z)=\left(\begin{array}{lll}3 \sin x & 2 \cos x & -z^{2}\end{array}\right)$.
- Determine the value of
$\nabla \times \vec{F}\left(-\frac{\pi}{2}, \frac{\pi}{2}, 3\right)$

5

Curl of vector field

- Now using a contour plot for the curl:
- $\overline{\mathrm{R}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ \frac{-x}{\sqrt{\mathrm{x}^{2}+y^{2}}} \\ 0\end{array}\right)$
- $\nabla \times \overline{\mathrm{R}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}0 \\ 0 \\ \frac{-1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)$

7

Curl of vector field

- Construct further examples:
- Plotting these quantities:
- $\overline{\mathrm{R}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ \frac{-\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ 0\end{array}\right)$
- $\nabla \times \overline{\mathrm{R}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}0 \\ 0 \\ \frac{-1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)$

6

Curl of vector field

- Now field with opposite curl:
- $\overrightarrow{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\frac{-\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ 0\end{array}\right)$
- $\nabla \times \overrightarrow{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)$
- Plotting these quantities:

Curl of vector field

- And again as contour plot:
- $\stackrel{\mathrm{L}}{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c}\frac{-\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\ 0\end{array}\right)$
- $\nabla \times \stackrel{\rightharpoonup}{\mathrm{L}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\begin{array}{c} \\ 0 \\ 0 \\ \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\end{array}\right)$

9

Vector and vector calculus identities

Example of proof of vector calculus identity

- Show that $\nabla \times(\nabla \phi)=0$.

$$
\begin{aligned}
& \nabla \times(\nabla \phi)=\nabla \times\left(\frac{\partial}{\partial \mathrm{x}} \phi \frac{\partial}{\partial \mathrm{y}} \phi \frac{\partial}{\partial \mathrm{z}} \phi\right) \\
& =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{z} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\
\frac{\partial}{\partial \mathrm{x}} \phi & \frac{\partial}{\partial \mathrm{y}} \phi & \frac{\partial}{\partial \mathrm{z}} \phi
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y} \frac{\partial}{\partial z} \phi-\frac{\partial}{\partial z} \frac{\partial}{\partial y} \phi \frac{\partial}{\partial z} \frac{\partial}{\partial x} \phi-\frac{\partial}{\partial x} \frac{\partial}{\partial z} \phi \frac{\partial}{\partial x} \frac{\partial}{\partial y} \phi-\frac{\partial}{\partial y} \frac{\partial}{\partial x} \phi\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

