Phys108 – Mathematics for Physicists II Lecturer: Outline syllabus: In this lecture we will: Prof. Tim Greenshaw. • Matrices. Revise partial differentiation. Oliver Lodge Lab, Room 333. Vector calculus. Introduce scalar and vector fields. • Office hours, Fri. 11:30...13:30. Look at some methods of Differential equations. visualising scalar and vector Email green@liv.ac.uk ♦ Fourier series.

- Lectures:
 - Monday 14:00, HSLT.
 - Tuesday 13:00, HSLT.
 - Thursday 09:00, HSLT.
- Problems Classes:
 - Friday 9:00...11:00.
 - Central Teaching Labs, GFlex.

- Fourier integrals.
- Recommended textbook:
 - "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
 - ◆ Exam end of S2: 70%.
 - Problems Classes: 20%.
 - ♦ Homework: 10%.

Vector calculus - the gradient of a scalar field

- fields.
- Define the gradient of a scalar field.
- Look at electric fields and potentials.

- Some comprehension questions for this lecture.
 - Explain which of the following can be represented as scalar and which as vector fields:
 - Atmospheric pressure.
 - · Ocean currents.
 - · Height above sea level across the UK.
 - ◆ Calculate the electric field associated with the electric potential $\phi(x, y, z) = 4z$.

1

Some revision – partial derivatives

- Calculate the following derivatives:
- $\frac{\partial}{\partial x} (\cos 4x \sin 3y + \exp[-2xz]) =$
- $\frac{\partial}{\partial z} \left(\cos 4x \sin 3y + \exp[-2xz] \right) =$

2

Contour plot of Snowdon

6

Vector fields

- A vector field is a vector that is defined at all points in space.
- Physical examples include the electric field, e.g. that surrounding a point charge can be sketched as:

Can represent a vector field defined in the (x, y) plane using arrows in the direction of the vector whose length is proportional to the magnitude.

