Phys108 - Mathematics for Physicists II

- Lecturer:
- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
- Monday 14:00, HSLT.
- Tuesday 13:00, HSLT.
- Thursday 09:00, HSLT.
- Problems Classes:
- Friday 9:00...11:00.
- Central Teaching Labs, GFlex.

1

Some revision - partial derivatives

- Consider a function of two variables, $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
- The partial derivatives of this
function w.r.t. x and y are defined by: $\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}$ $\frac{\partial f}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$
- Example: $f(x, y)=x y^{2}$. $\frac{\partial f}{\partial x}=y^{2}, \frac{\partial f}{\partial y}=2 x y$.
- Geometrically, consider $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ as shown opposite:
- Outline syllabus:
- Matrices.
- Vector calculus.
- Differential equations.
- Fourier series.
- Fourier integrals.
- Recommended textbook:
- "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
- Exam end of S2: 70\%.
- Problems Classes: 20\%.
- Homework: 10\%.

Vector calculus - the gradient of a scalar field

- In this lecture we will:
- Revise partial differentiation.
- Introduce scalar and vector fields.
- Look at some methods of visualising scalar and vector fields.
- Define the gradient of a scalar field.
- Look at electric fields and potentials.
- Some comprehension questions for this lecture.
- Explain which of the following can be represented as scalar and which as vector fields:
- Atmospheric pressure.
- Ocean currents.
- Height above sea level across the UK.
- Calculate the electric field associated with the electric potential $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=4 \mathrm{z}$.

Some revision - partial derivatives

- Calculate the following derivatives:
- $\frac{\partial}{\partial x}(\cos 4 x-\sin 3 y+\exp [-2 x z])=$
- $\frac{\partial}{\partial z}(\cos 4 x-\sin 3 y+\exp [-2 x z])=$

Scalar fields

- A scalar field is a scalar that is defined at all points in space.
- Can plot in "3D" for field defined in (x, y) plane, or use contour plot.
- Example, electric potential around
- The contours are "equipotentials": point charge:

5

Scalar fields and equipotentials

- Electric potential in drift chamber illustrated using equipotentials.
- Electric field always normal to equipotentials.
- Electrons produced in drift volume by high energy charged particle passing through gas in chamber.
- Electrons drift along electric field lines to anode wires (central potential wells) where they produce electrical signals.
- Drift electric field $\sim 1 \mathrm{MV} / \mathrm{m}$.
- Using information on time taken for electrons to reach wires, reconstruct path of high energy charged particle.

Contour plot of Snowdon

6

Vector fields

- A vector field is a vector that is defined at all points in space.
- Physical examples include the electric field, e.g. that surrounding a point charge can be sketched as:

- Can represent a vector field defined in the (x, y) plane using arrows in the direction of the vector whose length is proportional to the magnitude.

Scalar and vector field examples

- A scalar field is defined by: $\phi(x, y, z)=4 x^{2}-3 y+x z$
- What is the value of the field at the point $(x, y, z)=(1,2,2)$?
- A vector field is defined by:

$$
\vec{E}(x, y, z)=\left(\begin{array}{c}
1 \\
\cos x \\
\sin y
\end{array}\right)
$$

- What is the magnitude of the field at the point $(x, y, z)=\left(0, \frac{\pi}{2}, 0\right)$?
- What is its direction at the origin?

Gradient of a scalar field

- The gradient of a scalar field $f(x, y, z)$
is defined by:
- $\nabla f(x, y, z)=\left(\begin{array}{l}\frac{\partial}{\partial x} f(x, y, z) \\ \frac{\partial}{\partial y} f(x, y, z) \\ \frac{\partial}{\partial z} f(x, y, z)\end{array}\right)$
- The gradient of a scalar field is a vector field.
- Can also write as row vector:
$\nabla f=\left(\begin{array}{lll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}\end{array}\right)$
- Example, in 2D (so can draw on screen).
- $f(x, y)=-x^{2}-2 y^{2}+8, \nabla f=\left(\begin{array}{ll}-2 x & -4 y\end{array}\right)$ Scalar field and gradient

Vector fields and field lines

- Electric field lines are another way of visualising E fields.
- Lines trace path followed by (slow) test charge.
- Density of lines proportional to field strength.
- Examples shown opposite.
- Note that positive and negative charges are
 not balanced - how can you tell this?

Gradient of a scalar field

- Plot the scalar field $f(x, y)=-x^{2}-2 y^{2}+8$ as a contour plot.
- Plot the field's gradient $\nabla \mathrm{f}=\left(\begin{array}{ll}-2 \mathrm{x} & -4 \mathrm{y}\end{array}\right)$ as a vector plot.

Gradient of a scalar field

- The gradient vectors point in the direction of the steepest slope of the scalar field at the positions at which they are defined.
- The magnitude of the gradient vector gives the steepness of the slope (the gradient).
- A physical example:
$\stackrel{\rightharpoonup}{\mathrm{E}}=-\nabla \mathrm{V} \equiv-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}}, \frac{\partial \mathrm{V}}{\partial \mathrm{y}}, \frac{\partial \mathrm{V}}{\partial \mathrm{z}}\right)$
- Around a point charge q:
$\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}}$

$$
=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}
$$

- Calculate E field using our prescription, x component:

$$
\begin{aligned}
\frac{\partial \mathrm{V}}{\partial \mathrm{x}} & =\frac{\mathrm{q}}{4 \pi \varepsilon_{0}} \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-1 / 2} \\
& =\frac{\mathrm{q}}{4 \pi \varepsilon_{0}} \frac{-1}{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{-3 / 2} \times 2 \mathrm{x} \\
& =-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}} \\
& =-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \frac{\mathrm{x}}{\mathrm{r}} .
\end{aligned}
$$

Calculating $\stackrel{\rightharpoonup}{\mathrm{E}}$ from V

- Doing the same for the y and z components we have:
- $\frac{\partial \mathrm{V}}{\partial \mathrm{y}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \frac{\mathrm{y}}{\mathrm{r}}$

Now, $\mathrm{x} / \mathrm{r}=\cos \theta_{\mathrm{xr}}$ is the component of the radius vector in the x direction, y / r that in the y direction and z / r that

- and
- $\frac{\partial \mathrm{V}}{\partial \mathrm{z}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \frac{\mathrm{z}}{\mathrm{r}}$.
- Hence:
- $\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}}\left(\frac{\mathrm{x}}{\mathrm{r}}, \frac{\mathrm{y}}{\mathrm{r}}, \frac{\mathrm{z}}{\mathrm{r}}\right)$.
- $|\overrightarrow{\mathrm{E}}|=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}}$ and...
- ...the E field is directed radially away from the charge, as expected.

