Phys 108 - Mathematics for Physicists II

- Lecturer:
- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
- Monday 14:00, HSLT.
- Wednesday 13:00, HSLT.
- Thursday 09:00, HSLT.
- Problems Classes:
- Friday 9:00...11:00.
- Central Teaching Labs, GFlex.
- Outline syllabus:
- Matrices.
- Vector calculus.
- Differential equations.
- Fourier series.
- Fourier integrals.
- Recommended textbook:
- "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
- Exam end of S2: 70\%.
- Problems Classes: 20\%.
- Homework: 10%.

Matrices transform vectors

- The following vector defines a position in the (x, y) plane: $\stackrel{\rightharpoonup}{\mathrm{r}}_{\mathrm{i}}=\binom{2}{3}$
- If we multiply this vector by a matrix, the position it defines can change:
$\stackrel{\mathrm{r}}{2}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)\binom{2}{3}=\binom{-1}{4}$
- In this case, the vector has been stretched and rotated.
- See this in the plot below, in which $\overrightarrow{\mathrm{r}}_{1}$ is red and $\overrightarrow{\mathrm{r}}_{2}$ blue.

Lecture 3 - Matrices

- In this lecture we will:
- Have a first look at how matrices transform vectors.
- Introduce eigenvalues and eigenvectors.
- Some comprehension questions for this lecture.
- Find the eigenvalues and eigenvectors of the following matrices:
- $\left(\begin{array}{cc}2 & 0 \\ -3 & 5\end{array}\right)$
- $\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4\end{array}\right)$

2

Eigenvalues and eigenvectors

- Matrices can transform/rotate vectors
- Interesting in quantum mechanics are vectors whose direction is not changed when they are multiplied by a particular matrix (or "operator").
- Look at an example matrix...
$\mathbf{M}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
- ...and vector:
$\overrightarrow{\mathrm{r}}_{1}=\binom{\cos \theta}{\sin \theta}$
- What happens to \vec{r}_{2} as θ is changed, i.e. as the vector \vec{r}_{1} changes direction?

Look at $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}=\mathbf{M} \overrightarrow{\mathrm{r}}_{1}$ as we increase θ from 0 to 9π.

Eigenvalues and eigenvectors

- We see there are some values of θ for which $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}$ are pointing in the same direction (though they may have different lengths).
- These values of $\overline{\mathrm{r}}_{1}$ and $\overline{\mathrm{r}}_{2}$ are called eigenvectors.
- (The German word "eigen" means distinctive or singular.)
- When $\overline{\mathrm{r}}_{1}$ and $\overline{\mathrm{r}}_{2}$ are in the same direction, they must satisfy the equation $\overrightarrow{\mathrm{r}}_{2}=\lambda \overline{\mathrm{r}}_{1}$ or $\mathbf{M} \overrightarrow{\mathrm{r}}_{1}=\lambda \overrightarrow{\mathrm{r}}_{1}$.
- The constants λ are the eigenvalues associated with the eigenvectors.
- The eigenvector (or eigenvalue) equation is therefore: $\mathbf{M} \overrightarrow{\mathrm{x}}=\lambda \overrightarrow{\mathrm{x}}$.
- We can rewrite this: $\mathbf{M} \overline{\mathrm{x}}-\lambda \stackrel{\rightharpoonup}{\mathrm{x}}=\overrightarrow{0}$.
- Tempting to then write $(\mathbf{M}-\lambda) \overrightarrow{\mathrm{x}}=\overrightarrow{0}$...
- ...but $\mathbf{M}-\lambda$ is not defined!
- More correctly: $(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overrightarrow{0}$.
- This is commonly abbreviated to $(\mathbf{M}-\lambda) \overrightarrow{\mathrm{x}}=0$, on the understanding that there is a suppressed $\mathbf{1}$ in there...
- ...and that the 0 is in fact the vector: $\overline{0}=\binom{0}{0}$.

Eigenvalues and eigenvectors

- Hence must solve:
$\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$
$\Rightarrow(2-\lambda)(2-\lambda)-1=0$
or $\lambda^{2}-4 \lambda+3=0$
so $(\lambda-1)(\lambda-3)=0$ so $\lambda=1$ or 3 .
- We now have the eigenvalues, how do we find the eigenvectors?
- Two methods possible.
- First: start from $(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overline{0}$.
- E.g. for $\lambda=1$,
$\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}=\binom{0}{0}$
- Hence:
$x+y=0$
$x+y=0$
so $\mathrm{y}=-\mathrm{x}$.
- Any vector of the form $\mathrm{k}\binom{1}{-1}$ will do.
E.g. pick "simplest": $\overrightarrow{\mathrm{x}}_{1}=\binom{1}{-1}$.
- Second: start from $\mathbf{M} \overline{\mathrm{x}}=\lambda \stackrel{\rightharpoonup}{\mathrm{x}}$.
- E.g. for $\lambda=3$,
$\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{x}{y}=3\binom{x}{y}$

Eigenvalues and eigenvectors

- Can we solve $(\mathbf{M}-\lambda \mathbf{1}) \overrightarrow{\mathrm{x}}=\overline{0}$?
- This is a weird equation!
- Write as $\mathbf{A} \overrightarrow{\mathrm{x}}=\overline{0}$.
- Try and solve by multiplying both sides by \mathbf{A}^{-1}.
- Gives $\overrightarrow{\mathrm{x}}=\mathbf{A}^{-1} \overline{0}$.
- Either:
- The only eigenvector is $\overrightarrow{0}$.
- Or:
- \mathbf{A}^{-1} doesn't exist.
- We have seen an example with a nonzero eigenvector, so the first alternative is not true.

6

Eigenvalues and eigenvectors

- Hence:
$2 x+y=3 x$
$x+2 y=3 y$
so $\mathrm{y}=\mathrm{x}$.
- Any vector of the form $\mathrm{k}\binom{1}{1}$ will do.

Pick: $\overrightarrow{\mathrm{x}}_{2}=\binom{1}{1}$.

- Check by substitution, e.g. for $\lambda=1$:
$\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{1}{-1}=1\binom{1}{-1}$
- How can we have a matrix for which the inverse is not defined?
- If the determinant is zero!
- Hence, we must solve the equation $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{M}-\lambda \mathbf{1})=0$.
- Look at the example in the video.
$\mathbf{M}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
- Then:
$\mathbf{M}-\lambda \mathbf{1}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
=\left(\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right)
$$

- Some useful results:
- Determinant of matrix is equal to product of eigenvalues.
- $|\mathbf{M}|=3$.
- $\prod_{\mathrm{i}=1}^{2} \lambda_{\mathrm{i}}=1 \times 3=3$.
- Sum of diagonal elements of \mathbf{M} - the trace of $\mathbf{M}, \operatorname{Tr}(\mathbf{M})$ - is equal to sum of eigenvalues.
- $\operatorname{Tr}(\mathbf{M})=\sum_{\mathrm{i}=1}^{2} \mathrm{M}_{\mathrm{ii}}=2+2=4$.
- $\sum_{i=1}^{2} \lambda_{\mathrm{i}}=1+3=4$.

Eigenvalues and eigenvectors

- Eigenvalues of diagonal matrix are elements on the diagonal.

$$
\text { E.g. }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

- Must solve:
$\left|\begin{array}{ccc}1-\lambda & 0 & 0\end{array}\right|$
$\left|\begin{array}{ccc}0 & 2-\lambda & 0 \\ 0 & 0 & 3-\lambda\end{array}\right|=0$
i.e. $(1-\lambda)(2-\lambda)(3-\lambda)=0$ so $\lambda=1,2$ or 3 .
- What are the eigenvectors in this case?
- E.g. look at $\lambda=2$.
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
i.e. $\mathrm{x}=2 \mathrm{x}, 2 \mathrm{y}=2 \mathrm{y}$ and $3 \mathrm{z}=2 \mathrm{z}$.
- Looks strange, no constraint for y !
- Solution, $\mathrm{x}=0, \mathrm{z}=0$ and y allowed to have any value, e.g. pick $y=7$.
- Check: $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)=2\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)$ $\left(\begin{array}{c}0 \\ 14 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ 14 \\ 0\end{array}\right)$.

