Phys108 - Mathematics for Physicists II

- Lecturer:
- Prof. Tim Greenshaw.
- Oliver Lodge Lab, Room 333.
- Office hours, Fri. 11:30...13:30.
- Email green@liv.ac.uk
- Lectures:
- Monday 14:00, HSLT.
- Wednesday 13:00, HSLT.
- Thursday 09:00, HSLT.
- Problems Classes:
- Friday 9:00...11:00.
- Central Teaching Labs, GFlex.
- Outline syllabus:
- Matrices.
- Vector calculus.
- Differential equations.
- Fourier series.
- Fourier integrals.
- Recommended textbook:
- "Calculus, a Complete Course", Adams and Essex, (Pub. Pearson).
- Assessment:
- Exam end of S2: 70\%.
- Problems Classes: 20\%.
- Homework: 10%.

The transpose

- We may need to switch the rows and columns of vectors and matrices, i.e. form the transpose.
- $\mathrm{A}_{\mathrm{ij}}{ }^{\mathrm{T}}=\mathrm{A}_{\mathrm{j} i}$.
- Example:
- $\overrightarrow{\mathrm{r}}_{1}=\left(\begin{array}{lll}1 & -2 & 3\end{array}\right), \overrightarrow{\mathrm{r}}_{2}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$
$\stackrel{\rightharpoonup}{r}_{1} \cdot \stackrel{\rightharpoonup}{r}_{2}=1 \times 1+(-2 \times 0)+3 \times 1=4$.

$$
\begin{aligned}
& \text { Example: } \\
& \left(\begin{array}{ll}
12 & 21 \\
13 & 17 \\
18 & 19
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{lll}
12 & 13 & 18 \\
21 & 17 & 19
\end{array}\right)
\end{aligned}
$$

- Can use to give dot product of vectors.
- E.g. for two row vectors $\overrightarrow{\mathrm{r}}_{1}$ and $\overrightarrow{\mathrm{r}}_{2}$, $\overrightarrow{\mathrm{r}}_{1} \cdot \overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{r}}_{1} \overrightarrow{\mathrm{r}}_{2}^{\mathrm{T}}$.
- $\overline{\tilde{T}}_{2}^{\mathrm{T}}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
$\left(\begin{array}{lll}1 & -2 & 3\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=4$

■ Note, $(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$!

Lecture 2 - Matrices

- In this lecture we will:
- Introduce the transpose.
- Look at determinants.
- Define minors and cofactors.
- Define the adjugate and inverse of a matrix.
- Use matrices to solve simultaneous equations.
- Introduce Cramer's Rule.
- Some comprehension questions for this lecture.
- Find the adjugate of:

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 3 & 0 \\
2 & -2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

- Calculate the determinant of \mathbf{A} and hence find \mathbf{A}^{-1}.
- Use the above to solve the simultaneous equations:

$$
\begin{array}{r}
x+3 y=1 \\
2 x-2 y-z=3 \\
x-y+2 z=0
\end{array}
$$

Matrices and determinants

- Work now only with square matrices
- The determinant of a 2×2 matrix is:

$$
\operatorname{det}\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|
$$

- The determinant of a 3×3 matrix is:
$\left|\begin{array}{lll}\mathrm{d} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}\right|=\mathrm{a}\left|\begin{array}{ll}\mathrm{e} & \mathrm{f} \\ \mathrm{h} & \mathrm{i}\end{array}\right|-\mathrm{b}\left|\begin{array}{ll}\mathrm{d} & \mathrm{f} \\ \mathrm{g} & \mathrm{i}\end{array}\right|+\mathrm{c}\left|\begin{array}{ll}\mathrm{d} & \mathrm{e} \\ \mathrm{g} & \mathrm{h}\end{array}\right|$
$\begin{array}{lll}\mathrm{g} & \mathrm{h} & \mathrm{i}\end{array}$
$=\mathrm{ad}-\mathrm{bc}$.
- Example:
$\left|\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right|=1 \times(-2)-2 \times 0$
$=-2$
- We can build up the determinant of a larger (square!) matrix iteratively.

Matrices and determinants

- Write down an expression for the determinant of the following 4×4 matrix in terms of 3×3 determinants.

$$
\left(\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right)=
$$

Minors and cofactors

- The minor M_{ij} of an element A_{ij} of an $n \times n$ matrix A is the $n-1 \times n-1$ determinant obtained when the $\mathrm{i}^{\text {th }}$ row and the $\mathrm{j}^{\text {th }}$ column are removed from \mathbf{A}.
- Find minor of $(1,2)$ element of:
$\mathbf{A}=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$.
Remove row 1, col $2\left(\begin{array}{ccc}\times & \times & \times \\ d & \times & f \\ g & \times & i\end{array}\right)$
Hence $M_{12}=\left|\begin{array}{ll}d & f \\ g & i\end{array}\right|$.
- The cofactor C_{ij} of A_{ij} is given by: $\mathrm{C}_{\mathrm{ij}}=-1^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}}$
- Cofactors alternate sign across rows and down columns.
- For our 3×3 matrix, we have

$$
\mathrm{C}_{12}=-\mathrm{M}_{12}=-\left|\begin{array}{ll}
\mathrm{d} & \mathrm{f} \\
\mathrm{~g} & \mathrm{i}
\end{array}\right|
$$

- Putting these definitions together we see that the determinant is given by: $|A|=A_{11} M_{11}-A_{12} M_{12}+A_{13} M_{13}$

$$
=\mathrm{A}_{11} \mathrm{C}_{11}+\mathrm{A}_{12} \mathrm{C}_{12}+\mathrm{A}_{13} \mathrm{C}_{13}
$$

- Show that
$\mathrm{A}_{11} \mathrm{C}_{11}+\mathrm{A}_{12} \mathrm{C}_{12}+\mathrm{A}_{13} \mathrm{C}_{13}$
$=\mathrm{A}_{11} \mathrm{C}_{11}+\mathrm{A}_{21} \mathrm{C}_{21}+\mathrm{A}_{31} \mathrm{C}_{31}=|\mathbf{A}|$.
6

Identity matrix and inverse of a matrix

- The product $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\mathbf{1}$, where: $\mathbf{1}=\left(\begin{array}{cccc}1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \\ \vdots & \vdots & & \ddots\end{array}\right)$.
- Check for A as defined above: $\mathbf{A A}^{-1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \cdot\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$

$$
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Note, $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$!
- Example:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
\operatorname{det}(\mathbf{A}) & =-2, \\
\operatorname{cof}(\mathbf{A}) & =\left(\begin{array}{cc}
4 & -3 \\
-2 & 1
\end{array}\right) \\
\operatorname{adj}(\mathbf{A}) & =\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right) \\
\mathbf{A}^{-1} & =\frac{1}{-2}\left(\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Identity matrix and inverse of a matrix

- Exercises:
- Show that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{1}$.
- Determine the inverse of the matrices:
$\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$ and $\left(\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right)$.
- Prove that \mathbf{B} is the inverse of \mathbf{A},
where:
$\mathbf{A}=\left(\begin{array}{ccc}0 & 1 & -1 \\ 0 & 1 & 1 \\ -2 & 2 & 1\end{array}\right), \mathbf{B}=\frac{1}{4}\left(\begin{array}{ccc}1 & 3 & -2 \\ 2 & 2 & 0 \\ -2 & 2 & 0\end{array}\right)$
- What is the inverse of \mathbf{B} ?

Solving simultaneous equations using matrices

- Matrices are extremely useful!
- One application: solving simultaneous equations.
- Consider:

$$
x+y-z=1
$$

Multiplying the matrix equation from the left by \mathbf{A}^{-1} gives:
$\mathbf{A}^{-1} \mathbf{A} \stackrel{\rightharpoonup}{\mathbf{x}}=\mathbf{A}^{-1} \stackrel{\rightharpoonup}{\mathbf{c}}$
$\Rightarrow \stackrel{\rightharpoonup}{\mathrm{x}}=\mathbf{A}^{-1} \stackrel{\rightharpoonup}{\mathbf{c}}$.

- From this can read off the values of

$$
-x+y+z=3
$$ x, y and z .

$$
-2 x+y+3 z=-2
$$

- Can write as matrix equation $\mathbf{A} \overrightarrow{\mathrm{x}}=\stackrel{\rightharpoonup}{\mathrm{c}}$, where:

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 1 \\
-2 & 1 & 3
\end{array}\right), \overrightarrow{\mathrm{x}}=\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right), \overrightarrow{\mathrm{c}}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)
$$

Here,

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{3}{2} & 1
\end{array}\right), \mathbf{A}^{-1} \stackrel{\rightharpoonup}{\mathbf{c}}=\left(\begin{array}{c}
-7 \\
2 \\
-6
\end{array}\right)
$$

Hence:

$$
x=-7
$$

$$
y=2
$$

$$
z=-6
$$

Examples

- Write down the transpose of the matrix:
$\left(\begin{array}{lll}11 & 21 & 31 \\ 21 & 22 & 32 \\ 31 & 23 & 33 \\ 41 & 24 & 34\end{array}\right)$
- Prove that, for any 2×2 matrices \mathbf{A} and $\mathbf{B},(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$.
- Prove that:
$\mathbf{A}^{-1}=\left(\begin{array}{ccc}\frac{1}{a} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{c}\end{array}\right)$
for the 3×3 diagonal matrix
$\mathbf{A}=\left(\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right)$.

