Answers to lecture problems - lectures 20

Lecture 20
Slide 1
Write $x^{3}+2 x$ in terms of Legendre polynomials by using their orthonormality.
Use:
$P_{1}=x$.
$P_{3}=\frac{1}{2}\left(5 x^{3}-3 x\right)$.
Write $f(x)=x^{3}+2 x=a P_{1}+b P_{3}$.
We have:
$\int_{-1}^{1} P_{1}(x) f(x) d x=\frac{2}{2 \times 1+1} a=\frac{2}{3}$.
But also:
$\int_{-1}^{1} P_{1}(x) f(x) d x=\int_{-1}^{1} x f(x) d x=\int_{-1}^{1} x\left(x^{3}+2 x\right) d x=\int_{-1}^{1}\left(x^{4}+2 x^{2}\right) d x=2\left(\frac{x^{5}}{5}+\frac{2 x^{3}}{3}\right)_{0}^{1}=\frac{26}{15}$
Hence:
$\frac{2}{3} \mathrm{a}=\frac{26}{15} \Rightarrow \mathrm{a}=\frac{13}{5}$.
$\int_{-1}^{1} P_{3}(x) f(x) d x=\frac{2}{2 \times 3+1} b=\frac{2}{7}$.
But also:
$\int_{-1}^{1} P_{3}(x) f(x) d x=\int_{-1}^{1} x f(x) d x=\int_{-1}^{1} \frac{1}{2}\left(5 x^{3}-3 x\right)\left(x^{3}+2 x\right) d x=\int_{-1}^{1} \frac{1}{2}\left(5 x^{6}+7 x^{4}-6 x^{2}\right) d x$
$=\left(\frac{5 x^{7}}{7}+\frac{7 x^{5}}{5}-\frac{6 x^{3}}{3}\right)_{0}^{1}=-\frac{94}{35}$
Hence:
$\frac{2}{7} \mathrm{~b}=-\frac{94}{35} \Rightarrow \mathrm{~b}=-\frac{47}{5}$.

