Cosmic Rays

- Introduction
- The Pierre Auger experiment
- Accelerating
 Cosmic Rays
- Cosmic Rays and high energy photons
- The Cherenkov Telescope Array
- Summary

Introduction

- Cosmic Rays are high energy particles incident on the atmosphere from outer space.
- High energy means:
 - From about 10⁹ eV = 1.6 10⁻¹⁰ J, the energy of a red blood cell moving at a few m/s...
 - ...to about 3 × 10²⁰ eV = 48 J, the energy carried by a tennis ball moving at 90 mph.
- How do we know about these particles?
- Where do they come from and how are they accelerated?
- What effects do they have?
- How can we learn more about them?

2

- Located near Malargüe, Argentina.
- Proposed in 1992, completed in 2008.
- Area over 3000 km², about twice the area of Greater London.
- Consists of 1650
 Surface Detectors
 and four
 Fluorescence
 Detectors.

In principle... Angle Cascade plane "Fly's Eye" with some active photodectors Impact point Cherenkov Tanks

...and in practice

Surface detectors:

Cherenkov light in a nuclear reactor:

Fluorescence detectors:

High energy event at Auger

Computer simulation:

Measurement:

~ o o o o o o o o o o **o o** 0000000000000000000X0 ,0000×0000000000000000×0000

Acceleration of Cosmic Rays

Fermi mechanism:

 These clouds are thought to occur around supernovae, or in jets from Active Galactic Nuclei.

Jet visible in Hubble image of M87:

- Jet is 1500 pc (5000 LY) long!
- Seen because of synchrotron radiation.

Origins of high energy Cosmic Rays

Arrival directions of 69 CRs with $E > 55 \text{ EeV} (10^{18} \text{ eV})$ and position of AGNs within 75 Mpc (about 250 MLYs) of earth.

Origin of high energy Cosmic Rays

 Charged particle directions influenced by magnetic fields.

- Difficult to track Cosmic Rays back to their origins.
- Need particles that travel in straight lines through magnetic fields...photons.
- Fortunately, these are produced by Cosmic Rays!

$$p + N \rightarrow \pi^0 + X$$

- Can we detect these very high energy photons?
- Can they show us where Cosmic Rays are being produced?

Detecting high energy γ rays

• $\cos \theta = 1/n$, so light cone angle about 1° in air.

Detecting high energy γ rays

- Light flash lasts about 10 ns.
- Detect with "camera" made of photomultiplier tubes.
- Superimpose telescope images, find γ-ray source.

The first Atmospheric Cherenkov Telescope

Galbraith and Jelley, Harwell, 1953.

Current IACT arrays

VERITAS

HESS

Current IACT arrays

MAGIC

A source of gamma rays – Supernova 1006

- Distance 6000 Ly.
- Diameter about 60 Ly.
- First seen 1009 years ago:

Supernova 1006

 Satellite X-ray (green) and "low energy" γ-ray images (blue):

HESS very high energy γ -ray image:

All known sources of very high energy gamma rays.

- 25th March 2015.
- 157 γ-ray sources.
 - ◆ ~ 100 galactic.
 - ♦ ~ 130 found with IACTs.
- Further progress requires:
 - Improved sensitivity.
 - Better energy • and...

...angular resolution.

Performance goals for next-generation IACT

- Aim for factor of 10 improvement in sensitivity.
- Compare HESS ~ 500 hour image of galactic plane...

...with expectation with increased sensitivity, same exposure.

Expect to observe around 1000 sources (galactic and extra-galactic).

The Cherenkov Telescope Array concept

Low energy Four 23 m telescopes $4...5^{\circ}$ FoV ~2000 pixels ~ 0.1° Medium energy About twenty-five 12 m telescopes 6...8° FoV ~2000 pixels ~ 0|18° High energy About seventy 4 m telescopes 8...10° FoV 1000...2000 pixels ~ 0.17°...0.23°

CTA performance goals

- Improve angular resolution by factor ~ 5.
- Substructure of SNR shock fronts can then be resolved:

Resolution 0.1°.

Resolution 0.02° .

Larger field of view (up to 10°).

- Southern array:
 - Galactic and extragalactic sources.
 - 20 GeV...100 TeV.
 - Angular resolution $0.02...0.2^{\circ}$.
- Northern array:
- Mainly extragalactic sources.
 - ◆ 20 GeV...1 TeV.

Large size telescope design

- Diameter 23 m, focal length 28 m.
- (Modified) Davies-Cotton optics.
- Support structure carbon fibre.

- Camera diameter ~ 2.2 m, mass ~ 2 t, uses conventional 1.5 inch (superbialkali) photomultipliers.
- Similar to that for HESS II:

Medium size telescope

- Diameter 12 m, focal length 17 m.
- Davies-Cotton optics.
- Camera support and dish structure steel.
- Camera diameter ~ 2.2 m, mass ~ 2 t.

One SST design, the Gamma-ray Cherenkov Telescope

Compact High-Energy Camera

In theory and practice...

Prototypes and tests

 Camera will be tested on a prototype SST-GATE telescope in Paris in autumn 2015...

 ...and on a second (ASTRI) SST prototype on Etna towards the end of 2015...

CTA site

- Sites under consideration in:
 - Namibia, Chile and Argentina.
 - Mexico, USA and Spain (La Palma).
- Considerations include:
 - Altitude.
 - Cloud cover.
 - Wind speed.
 - Dustiness.
 - Seismic loads...

Namibia: advantages and disadvantages

ESO Paranal site in Chile

Detect Dark Matter?

 Dark Matter forms most of material of Universe, ("seen" e.g. in Bullet Cluster).

Annihilation of
Dark Matter
particles could
produce high
energy photons
that CTA could
measure.

Summary

- Cosmic Rays continually bombard the atmosphere and some of them have astonishing energies.
- The best way of learning about how these particles are accelerated is to measure the photons they produce when they interact.
- Studying these photons with current and future instruments will help us to understand the most violent events occurring in the Universe...
- ...and also to learn more about fundamentally new physics, such as Dark Matter.

