Spin Physics: where will we be in 2006?

Gerard van der Steenhoven (NIKHEF)

Durham (UK), 6 December 2001

IPPP Workshop on Future Physics at HERA

• The origin of spin in the baryon octet:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma_q + \Delta G + L_z$$

- Developing insight:
 - EMC (SLAC, SMC and HERMES):
 - The quark model:
 - Relativistic MIT bag model:
- Experimental questions:
 - What about flavour dependence?
- $\Delta \Sigma_q = (\uparrow \downarrow \uparrow) = 1.0$ $\Delta \Sigma_q \simeq 0.60 0.75$

 $\Delta \Sigma_q \approx 0.3 \pm 0.1$

- $\Delta u(x)$, $\Delta d(x)$, $\Delta s(x)$
- What about gluons?

- What about orbital angular momentum? Deeply Virtual Compton Scattering: L_z ?

- What about other baryons?

n,Λ⁰,..

- What about lattice QCD?

longitudinal spin: $\Delta \Sigma_q \simeq 0.18 \pm 0.10$ transverse spin: $\delta \Sigma_q \simeq 0.56 \pm 0.09$

• Polarized Deep Inelastic Scattering @ 27 GeV:

• Asymmetry w.r.t. to target spin orientation:

$$A_1 = \frac{1}{DP_T P_B} \frac{N_{\uparrow\downarrow} - N_{\uparrow\uparrow}}{N_{\uparrow\downarrow} + N_{\uparrow\uparrow}}$$

• The spin-dependent structure function $g_1(x)$:

$$A_1 \simeq \frac{g_1(x)}{F_1(x)} \simeq \frac{1}{F_1(x)} \sum_f e_f^2 \Delta q_f(x)$$

with the quark polarization:

$$\Delta q_f(x) = q_f^+(x) - q_f^-(x)$$

• Use hadron final state as a tag:

 $\pi^+ \to \Delta u(x); \quad K^- \to \Delta s(x); \quad D^0 \to \Delta G(x)$

• Compare to existing data:

• Conclusion:

 $g_1^d(x)$: no strong Q^2 dependence

• Comparison to existing $g_1^p(x)/F_1^p(x)$ data:

• Asymmetry for semi-inclusive hadron (h) production:

$$A_1^h(x) = \frac{\int dz \, \sum_f e_f^2 \, \Delta q_f(x) \, D_f^h(z)}{\int dz \, \sum_f e_f^2 \, q_f(x) \, D_f^h(z)} \propto \frac{N_{\uparrow\downarrow}^h - N_{\uparrow\uparrow}^h}{N_{\uparrow\downarrow}^h + N_{\uparrow\uparrow}^h}$$

• Define purity $P_f^h(x)$:

$$P_f^h(x) = \frac{e_f^2 q_f(x) \int D_f^h(z) dz}{\sum_f e_f^2 q_f(x) \int D_f^h(z) dz}$$

(probability that hadron h is produced when quark f is hit)

• Measure asymmetries on various targets:

$$\vec{A}(x) = \mathbf{P}(x) \, \vec{Q}(x)$$

with
$$\vec{A}(x) = (A_{1p}, A_{1p}^{h^+}, A_{1p}^{h^-}, A_{1d}, ...)$$

and $\vec{Q}(x) = (\Delta u(x), \Delta d(x), \Delta \bar{u}(x), ...)$

 \Rightarrow Polarized quark distributions: $\Delta u(x)$, $\Delta d(x)$, ...

• Measured semi-inclusive asymmetries $A_1^h(x)$:

• Extracted quark spin distributions:

• Expected data quality with all 2000 data analyzed:

HERMES ∆q extraction þ–þMC projection

- Assume one more year of data on long. pol. $^1\mathrm{H}$

HERMES $\triangle q$ extraction $\not\models - \not\models MC$ projection

• pQCD Compton graph and Photon-Gluon Fusion:

• Asymmetry for high- p_T pions ($R = \sigma_{PGF} / \sigma_{Com}$):

$$A_{LL}^{eN \to h_1 h_2} = \hat{a}_{QCDC} \frac{\Delta q}{q} \frac{1}{1+R} + \hat{a}_{PGF} \frac{\Delta G}{G} \frac{R}{1+R}$$

• Target spin-asymmetry on long. polarized 1 H:

• First paper on $\Delta G/G$ (HERMES, PRL 84 (2000) 2584):

• Anticipated data quality in 2006:

- Off-shell photon*-quark scattering:
 - Detect e' and γ , and require: $E_{miss} = 0$

• Ji's sumrule (Phys. Rev. Lett. 78 (1997) 610):

 $\int x dx [H(x, \Delta^2, \xi) + E(x, \Delta^2, \xi)] = A_q(\Delta^2) + B_q(\Delta^2)$ with $\Delta^2 = -t$ and

 $\lim_{\Delta^2 \to 0} [A_q(\Delta^2) + B_q(\Delta^2)] = 2J_{quark} = \Sigma_q + 2L_q$

 \Rightarrow DVCS: total quark angular momentum

- Experimental considerations:
 - Interference with Bethe-Heitler process: DVCS \otimes BH makes DVCS measurable
 - Detect scattered photon, but suppress π °'s
 - Observe azim. asymmetry: $A_{LU}^{BetheHeitler} = 0$

• Missing mass spectrum and azimuthal distribution:

• Extract $\sin(\phi)$ -moment, $A_{LU}^{\sin\phi} = \frac{2}{N} \sum_{i=1}^{N} \frac{\sin\phi_i}{(P_l)_i}$:

• Design large acceptance recoil detector:

- Experimental objectives:
 - Identify recoil protons ($0.1 < p_{rec} < 1.2 \text{ GeV/c}$)
 - πp separation: identify $\Delta(1232)$ final state
 - Hermeticity (together with Lambda Wheels):

suppress non-exclusive events

- Physics: Exclusive Reactions

• Beam-spin asym. - anticipated data (2 fb $^{-1}$):

(HERMES Large Acceptance Recoil Detector proposal.)

• Beam-charge asym. - anticipated data (2 fb $^{-1}$):

- Two schemes for the Λ spin content:
 - Quark parton model: $\Delta s = 1.00$
 - SU(3) flavour symm.: $\Delta s = 0.6, \Delta u = \Delta d = -0.2$
- Measure the Λ polarization from $\Lambda \to p\pi^-$:

$$\frac{1}{N}\frac{dN}{d\Omega} = \frac{1}{4\pi}\left(1 + 0.64\,\vec{P}_{\Lambda}\cdot\hat{p}\right)$$

• Determine $u \to \Lambda$ spin transfer $D_{LL'}^{\Lambda}$:

$$D_{LL'}^{\Lambda} = \frac{\vec{P}_{\Lambda} \cdot \hat{L'}}{P_B D(y)} = \frac{\sum_f e_f^2 q_f^N(x) \,\Delta D_f^{\Lambda}(z)}{\sum_f e_f^2 q_f^N(x) \,D_f^{\Lambda}(z)} \approx \frac{\Delta D_u^{\Lambda}(z)}{D_u^{\Lambda}(z)}$$

• Electroproduction of Λ hyperons at HERMES:

• Negative polarisation for $x_F (= \frac{2p_L}{W}) < 0$:

• Three leading order distribution functions:

- Importance of $h_1(x)$ measurements:
 - HERMES data: $\Delta\Sigma$ = 0.30 \pm 0.04 \pm 0.09
 - $\Delta\Sigma$ is so small because of axial anomaly:
 - * Redistribution of angular momentum in nucleon:

 $\frac{1}{2}\Delta\Sigma \approx +0.15, \quad \Delta G \approx +1.0, \quad L_z \approx -0.65$

* Redistribution is less in transverse case:

 $\Delta\Sigma$ < $\delta\Sigma$ < 1 (Quark Parton Model)

* Lattice QCD calculation (Phys. Rev. D 56 (1997) 433):

 $\Delta\Sigma$ = 0.18(10) and $\delta\Sigma$ = 0.56(9)

- The structure function $h_1(x)$ is chirally odd :
 - Not accessible in inclusive DIS
 - Use semi-inclusive DIS with chirally-odd $H_1^{\perp(1)u}(z)$
 - Assume *u*-quark dominance
 - Asymmetry for Collins process:

$$A_T^{\pi^+}(x,y,z) = P_T \cdot D_{nn} \cdot \frac{\delta u(x)}{u(x)} \cdot \frac{\mathrm{H}_1^{\perp(1)u}(z)}{\mathrm{D}_1^u(z)},$$

- $\mathrm{H}_{1}^{\perp(1)u}$ depends on $\phi_{c} = \phi_{h} + \phi_{s} - \pi$

• Evidence for transversity from HERMES data:

• Expected data on transv. pol. ¹H (7×10^6 DIS ev.):

• Expected data on transv. pol. 2 H (7 \times 10⁶ DIS ev.):

 $\approx 2001 - 2004$

> 2003

2002

- HERMES Run II: 2001 2006
 - Transverse spin $\approx 2001 - 2003$ $\approx 2003 - 2004$
 - Longitudinal spin
 - Unpolarized end-of-fill runs
 - Excl. react. w. Recoil Detector: $\approx 2004 2006$
- COMPASS (CERN): 2001 ??
 - Commissioning + first data taking: 2001
 - * Optimized for $\Delta G/G$
 - * 2nd spectrometer partially equiped (no RICH2, no ECAL2, partial DAQ, old SMC target)
 - First transverse data taking:
 - * Requirement: 2^{nd} spectrometer fully equipped (including new COMPASS target solenoid)
- RHIC-SPIN: 2001 ??
 - First p p collisions at $\sqrt{s} = 200$ GeV: 2001
 - Test with transverse polarization: Oct. 2001
 - * Measure A_N for π^0 at high x_F (1.5 pb⁻¹)
 - Install spin rotators:
 - * Measure $\Delta G/G$ from $\vec{p} + \vec{p} \rightarrow \gamma + jet + X$
 - * Measure Δq_f from $\vec{p} + p \rightarrow W^{\pm} + X$
 - Extensive transverse running: ≈ 2006

- What have we learned, and what remains?
 - Flavour decomposition of spin:
 - * Good data on $\Delta u(x)$, $\Delta d(x)$
 - * Least precise: $\Delta s(x)$
 - Gluon polarization:
 - * Good $\Delta G(x)$ data
 - * No data at x < 0.01 (where the gluons are!)
 - Measurements of orbital angular momentum:
 - * DVCS: x, -t dependence
 - * Uncertainties prevent evaluation of J_q
 - The spin structure of heavier baryons:
 - * Fairly good data on Λ^0
 - Transverse spin:
 - * First $h_1(x)$ data on the proton from HERMES
 - * Not yet: test anomalous Q^2 evolution
- Major challenges for after 2006:
 - At intermediate energies (30 GeV):
 - * DVCS: determination of J_q
 - * Exclusive reactions: GPD's
 - At higher energies (> 200 GeV):
 - $* h_1(x,Q^2)$ at low x
 - * $\Delta G(x)$ at low x
 - * DVCS, GPD's

