ZEUS Status and Future

Durham Workshop 6.12.2001 Uwe Schneekloth

Outline

Overview of ZEUS Detector

- Detector Modifications 2000/2001
 - Removed Detector Components
 - Leading Proton Spectrometer, Forward Plug Calorimeter, Beam Pipe Calorimeters
 - New Detector Components
 - Beam Line, Micro Vertex Detector, Straw Tube Tracker, Luminosity Monitor
- Performance Signs of Aging ?
- Future of the Detector

HERA Luminosity Upgrade

- Increase luminosity from
 1.5 to 7*10³¹ cm⁻² s⁻¹
- Stronger focussing of electron and proton beams
- Focusing elements closer to IP
- Earlier separation of both beams
- Final HERA magnets (superconducting) inside detector volume

Status

- Hardware completed July 2001
- HERA commissioning since August
- Achieved design specific luminosity (with low currents)
- Working on optimizing synchrotron radiation background

ZEUS Inner Detector

- Tracking Detectors:
 - CTD for $\theta > 25^{\circ}$
 - CTD+FTD for
 - $14^{0} < \theta < 25^{0}$
 - FTD only for 8⁰ < θ < 14⁰
- CTD:
 - 72 layers
 - Stereo angle ±5°
 - Good efficiency down to 25⁰
- TRDs replaced by Straw Tube Tracker

Tracking at High Luminosity

- Central Environment Solutions
 - Very good momentum resolution
 - Secondary vertex tagging
 - Difficult to access

- - Silicon strips close to beam
 - 20 µm pitch 120 µm readout
 - Full system test

- Forward Environment
 - High track density
 - Highest close to beam axis
 - Large and variable backgrounds

- Solutions
 - Large number of wires
 - Shortest cells where occupancy highest
 - Robust reconstruction
 - 4 views instead of 3
 - Sacrifice particle ID for track finding in FDET

Micro Vertex Detector Assembly

22 Nov 2000: 15 ladders (75000 channels) installed...

Central Tracking Detector

- Mini jet chamber cells geometry
- Resolution: $s_{p_t} / p_t = 0.0058 \ p_t \otimes 0.0065 \otimes 0.0014 / p_t \ p_t \text{ in } GeV$ $s(dE / dx) \approx 10\%$

Long-term aging study

- •1992-1997 no signs of aging
- End of 1997 some non-beam induced HV trips
- More serious in 2000
- Added small quantity of water to gas
- Completely cured HV trips
- CTD performing without problems

Straw Tube Tracker

Replaced TRD by STT

Improving FDET geometry

- 7.5mm diameter straws
- Improved pattern recognition
- Good tracking
- Good radiation hardness

Uranium Scintillating Calorimeter

- No signs of radiation damage (total dose 90Gy, expect damage at 3kGy)
- Number of noisy cells increased (0.1% level)
- Upgrade of BCAL HV system in progress

Calorimeter properties

- compensating, e/h ratio =1.0
- linear response to electrons and hadrons
- energy resolution: electrons

$$\mathbf{s}_{E} / E = 18\% / \sqrt{E / GeV} \otimes 2\%$$

hadrons

$$\mathbf{s}_E / E = 35\% / \sqrt{E / GeV} \otimes 1\%$$

timing resolution 1ns

Acceptance of Calorimeter

Covers 99.8% of full solid angle

Beam pipe holes:

- originally 20 x 20cm
- 1995 RCAL 20 x 8cm + beam pipe calorimeters (low x physics)
- 1997 FPC 6.3cm (diffraction)
- **2001**
 - FCAL 20 x 20cm
 - RCAL 20 x 23.6cm (superconducting HERA magnets)

New Luminosity Monitor

- Measure rate of photons: $ep \rightarrow epg$
- Challenge
 - Rate of bremsstrahlung photons increase by factor of 5
 - Rate of synchrotron radiation photons increase by factor of 7 with higher energy
 - Photon calorimeter would be damaged in a few months
- Upgrade
 - Build radiation hard calorimeter with increased filter thickness (filter reduces energy resolution)
 - Active filter
 - Cerenkov detectors only sensitive to high energy photons (not sensitive to synchrotron radiation)
 - correct for energy loss in filter

Pair Spectrometer

Luminosity measurement still difficult: high rate, pile-up,...

Additional complementary method

- Conversions in exit window (rate only 10%) $g \rightarrow e^+ e^-$
- Dipole magnet

Trigger and Data Acquisition System

Very flexible and powerful 3 level trigger

Trigger Upgrade 2000/2001 First Level Trigger

• Implemented Fast Clear

(global beam gas abort, ...) Second Level Trigger

- •New Global Tracking Trigger MVD, CTD, STT tracking:
 - including very forward region
 - better vertex determination
 - new physics filters

Third Level Trigger and Event Builder

Replaced transputers/SGIs by PCs

Present status

- Detector in good condition, performing to specifications
- No significant signs of aging
- Presently, no further detector upgrades planned
- Would expect detector still operational in 2006

Questions, uncertainties:

- HERA II background conditions?
 - MVD radiation damage? CTD aging?
- Spare parts for electronics?
- Manpower and expertise?