HERA Collider Physics

Durham, 6.12.2001

Peter Schleper

DESY

HERA results in 2006

a personal selection

incomplete

speculative

HERA Collider Physics

$e^\pm p$ collisions at HERA I and II

HERA I: 1993-2000 HERA II: 2001-2006 (?) • Increase to L=1000 $\,\mathrm{pb}^{-1}$ • E_{p_0} =820...920 GeV • e^+ and e^- equally shared E_{e_0} =27.5 GeV • e^{\pm} polarisation $\approx 55\%$ • \sqrt{s} =320 GeV • $L\gtrsim 100 \text{ pb}^{-1}$ • Runs with lower/higher E_{p_0} 600 HERA Luminosity upgrade **HERA** luminosity intergrated luminosity (1/pb) intergrated luminosity (1/pb) 500 100 e⁺ e E_p = 920 GeV 400 E_p = 820 GeV 99-00 300 50 200 93-97 100 **H1** 98-99 0 0 500 1000 1500 0 500 1000 0 days or running days of running

HERA II

Collider experiments: H1, ZEUS

- Stronger focussing close to experiments
- Spin rotators
- New beam lines

HERMES, HERA-B

not affected

HERA Collider Physics

HERA II

The HERA upgrade

- Strong focussing at interaction point
- Magnets inside main detector

The Challenges

- Synchrotron radiation
- Back scattering from

magnets

The Detector upgrades

- Trigger !
- New forward tracking
- Extended silicon tracking
- New Forward proton spectrometer
- Smaller acceptance at low angles: $Q^2 > 8 \, {\rm GeV}^2$

Virtues of ep scattering at HERA

large Q^2 lever arm: precision QCD

- α_s , quark and gluon densities
- small x: high parton densities
- novel quantum system

small Q^2 : large distance QCD

non-perturbative, confinement

large CMS energy:

• (beyond) the EW standard model (largest E_{CMS} with lepton in initial state)

\rightarrow reason why H1 / ZEUS are leading QCD experiments

Partons in the Proton

 $ep \rightarrow eX$ at small Q^2 :

$$\frac{d^2\sigma}{dx\,dQ^2} \approx \frac{2\pi\alpha^2}{xQ^4} \; F_2$$

momentum distribution of quarks:

small $x \rightarrow$ high quark density \rightarrow strong rise of quark density \rightarrow high gluon density

Quark/Gluon Distribution in the Proton

Higgs Produktion at LHC

only process: DIS at HERA but: $x \lesssim 10^{-4} \rightarrow Q^2 \lesssim 1 \,{\rm GeV}$

Gluon induced processes

HERA Collider Physics

Longitudinal Structure Function F_L

Verification of gluon density: small x

Bottom production: Unexplained

much enhanced B-tagging

HERA Collider Physics

Tevatron jets at high P_T : gluons at high x

open questions...

HERA Collider Physics

Photon and Proton at High x

access to proton at high x !

- dominated by direct + pointlike part of γ
- significant contribution from gluon in proton
 - \rightarrow Tevatron high E_T jets

HERA summary on α_s

• NNLO calculations for F2 (and 2-jet production ?)

→ reduction of scale errors by factor 2-3 !! the CHALLENGE: get best α_s (± 1%) needs reduction also of experimental errors !!

Low-x behaviour of $\mathbf{F_2}$

Low-x Parton Dynamics

No direct dynamical evidence up to now

- $\bullet\,$ CCFM (CASCADE): some success for F_2^{charm}
- NNLO for jet production needed

HERA Collider Physics

Hard Diffraction

Hard scattering factorization

$$\sigma \sim \sum_{i} f_{i/p}(x_{\mathbb{I}}, t, x, Q^2) \times \hat{\sigma}_i(x, Q^2)$$

with DGLAP evol. $f_{i/p}(x_{I\!\!P},t,x,Q^2)$ at fixed x_P, t .

- Proof for diffractive DIS
- (or low mass Experimental test ?
 - Partonic picture of diffraction

Colour Dipol Picture of DIS

colour singlet exchange of more than one • hope to unify description of DIS and Diffraction

GPD's: Generalized Parton

Distributions

• $f_{i/p}(x_1, x_2, Q^2)$

parton (2 gluons or more)

 \rightarrow Correlations

Diffractive Structure Functions

Very Forward Proton Spectrometer (VFPS)

New detector at z = 200m

- full acceptance at
 - $0.005 < x_{I\!\!P} < 0.02,$
 - $|t|<0.25~{\rm GeV^2}$
- trigger for all diffractive processes
- |t|, ϕ measurement
- no contribution from p-dissociation

 \rightarrow High statistics test of QCD interpretation of diffraction: $F_2^{D(4)},$ jets, charm, DVCS

H1 VFPS acceptance

HERA Collider Physics

Colour Dipol Picture of DIS

HERA Collider Physics

Deeply Virtual Compton Scattering

Neutral Current

$$\begin{aligned} \frac{\mathrm{d}^{2}\sigma_{NC}^{e^{\pm}p}}{\mathrm{d}x\,\mathrm{d}Q^{2}} &= \frac{2\pi\alpha^{2}}{xQ^{4}} \left[Y_{+}\tilde{F}_{2}(x,Q^{2}) \mp Y_{-}x\tilde{F}_{3}(x,Q^{2}) - y^{2}\tilde{F}_{L}(x,Q^{2}) \right] \\ Y_{\pm} &\equiv 1 \pm (1-y)^{2} \end{aligned}$$

$$\tilde{F}_{2} &\equiv F_{2} - v_{e} \frac{\kappa_{w}Q^{2}}{(Q^{2}+M_{Z}^{2})} F_{2}^{\gamma Z} + (v_{e}^{2}+a_{e}^{2}) \left(\frac{\kappa_{w}Q^{2}}{Q^{2}+M_{Z}^{2}}\right)^{2} F_{2}^{Z} = x \sum A_{i}(q_{i}+\bar{q}_{i}) \\ x\tilde{F}_{3} &\equiv -a_{e} \frac{\kappa_{w}Q^{2}}{(Q^{2}+M_{Z}^{2})} xF_{3}^{\gamma Z} + (2v_{e}a_{e}) \left(\frac{\kappa_{w}Q^{2}}{Q^{2}+M_{Z}^{2}}\right)^{2} xF_{3}^{Z} = x \sum B_{i}(q_{i}-\bar{q}_{i}) \\ v_{e}, a_{e} - vector and axial couplings, \quad \kappa_{w}^{-1} = 4\frac{M_{W}^{2}}{M_{Z}^{2}}(1-\frac{M_{W}^{2}}{M_{Z}^{2}}) \end{aligned}$$

Charged Current

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{CC}}^{\pm}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{G_F^2 M_W^4}{2\pi x} \frac{1}{(Q^2 + M_W^2)^2} \,\phi_{\mathrm{CC}}^{\pm}(x, Q^2)$$
$$\phi_{\mathrm{CC}}^{+} = x \left[(\bar{u} + \bar{c}) + (1 - y)^2 (d + s) \right] \qquad (in \ \mathrm{LO})$$
$$\phi_{\mathrm{CC}}^{-} = x \left[(u + c) + (1 - y)^2 (\bar{d} + \bar{s}) \right]$$

Reduced NC and CC cross sections

$$\tilde{\sigma}_{NC}(x,Q^2) \equiv \frac{1}{Y_+} \frac{Q^4 x}{2\pi\alpha^2} \frac{\mathrm{d}^2\sigma_{NC}}{\mathrm{d}x\mathrm{d}Q^2} = F_2(1+\Delta_{F_2}+\Delta_{F_3}+\Delta_{F_L})$$
$$\tilde{\sigma}_{CC}(x,Q^2) \equiv \frac{2\pi x}{G_F^2} \left(\frac{M_W^2+Q^2}{M_W^2}\right)^2 \frac{\mathrm{d}^2\sigma_{CC}}{\mathrm{d}x\mathrm{d}Q^2}$$

HERA Collider Physics

High \mathbf{Q}^2 and Weak Interaction

HERA Collider Physics

Cross sections at high Q^2

 $\gamma/Z{:}$ mainly $u{-}$ quarks

HERA Collider Physics

Cross sections at high Q^2

 γ/Z : mainly u- quarks

HERA Collider Physics

Cross sections at high Q^2

W-exchange: mainly d- quarks: \pm

HERA Collider Physics

Polarized NC Cross Sections

HERA Collider Physics

Weak couplings of light quarks

HERA Collider Physics

Right handed weak currents: W_R

Polarized charged currents

- $\sigma_{CC}(e_P^{\pm}) = (1 \pm P) \, \sigma_{CC}(e_{P=0}^{\pm})$
- needs high polarisation
- needs high precision of polarisation
- $M_{W_R} \stackrel{<}{{}_\sim} 600 \ {\rm GeV}$
- similar to direct search at Tevatron

Beyond the Standard Model: Supersymmetrie

single production of squarks in R-parity violating models

Minimal Supergravity + R_p Violation

nothing found yet up to M_{q̃} =245 GeV
will reach sensitivity of M_{q̃} ≈ 300 GeV

Summary

What did / will we learn from HERA ?

- low-x: new regime of QCD the main theoretical activity so far QCD picture of Diffraction colour dipole – BFKL ??
- precision QCD: world best value of α_s Final (?) word on proton structure at HIGH and LOW x
- high Q^2 : only just started luminosity upgrade precision test of SM at 10^{-18} m
- searches: high P_T lepton events ? Supersymmetry with R_P violation
 - contact interactions
 - +??