The Electron Ion Collider

I. Ben-Zvi, J. Kewisch, J. Murphy, S. Peggs, BNL

An Electron Ion Collider (EIC) with a large range in the center of mass energy for polarized electronproton scattering, and electron-Ion (heavy ion) scattering is proposed as a next generation experimental facility for deep inelastic scattering (DIS) studies.

With various options for electron beam possible, a significant increase in the luminosity over the present Colliders is envisioned.

Brookhaven Science Associates

What is the EIC?

- The EIC machine is a result of the merger of two initiatives, the eRHIC and the EPIC machines. The result is a machine with the following features:
- Electron-proton / ion colliders
- Center-of-mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions)
- Luminosities at 10³³ cm⁻² s⁻¹
- Polarization of electrons & protons

Brookhaven Science Associates

Constraints from Experiments

- C.M. Energy range, energy ratio
- Electron energy tunability during experiment (with polarization)
- What is the minimum bunch spacing? (Currently up to 5-6 ns in some designs)
- What is the detector stay-clear length (no accelerator components).
 Small bunch spacing requires invasion of IP by accelerator.
- Synchrotron radiation loading

Brookhaven Science Associates

Accelerator Issues

- Obtaining 10³³ luminosities
- Synchrotron radiation
- Ring Ring, Linac Ring or Recirculator-Ring
 - Ring-Ring is an established technology
 - Linac-Ring offers advantages
 - Recirculator-Ring the best of all worlds?
- Potential use of RHIC
 - Existing machine
 - A number of IPs
 - Polarized protons, heavy ions
- Number of Interaction Points
- Electron cooling is needed

Brookhaven Science Associates

The rules of the game:

Synchrotron-Radiation in an Electron Storage-Ring

- In one turn of storage ring of bending radius ρ , the energy loss per turn is $U_0[MeV] = 0.0885 \frac{E[GeV]^4}{\rho[m]}$ The total radiated power is $P[MW] = U_0[MeV]I[A]$
- The linear power density is
 $P_{lin}[kW/m] = 14.1 \frac{E[GeV]^4 I[A]}{\rho[m]^2}$ Current technology limit (approx)
 $P_{lin} \leq 10kW/m$
- This places restrictions on energy / current / size

Brookhaven Science Associates

Electron Polarization in an Electron Storage Ring

The polarization time depends on the energy and radius, (as synchrotron radiation). Gets difficult at a high current.

$$T_{pol} = \frac{99C\rho^2}{2\pi E_e^5} \propto \frac{CI}{EP_{lin}}$$

 Spin resonances – probably impossible to accelerate or decelerate through any resonance (lose polarization)

$$\frac{E_{resonance}}{0.44065GeV} = v + k_x v_x + k_y v_y + k_s v_s$$

Brookhaven Science Associates

Electron Polarization in a Linac

- Polarized electron gun: GaAs cathode, ~80% polarization, quantum efficiency 0.1 to 0.3% (C. Sinclair, P. Hartmann, JLAB)
- 1/e lifetime of cathode 10⁵ Coul/cm². @ 1 cm² (7 cm² built) and 0.2 A current, lifetime is well over 5 days.
- Laser at 850 nm, about 250 watts. Difficult, but doable. Lasers are improving very fast.
- Superb flexibility due to laser
- Subharmonic bunching to match into linac. Possibly RF gun?!

Brookhaven Science Associates

All EIC specs can be met by an electrostatic gun.

State of the art in photocathodes:

Туре	P/%	QE/%
Thick bulk	32	10
Thin bulk	40	6
Strained layer	80	0.3
Superlattice	90	0.1

13.5 nC requires 8.5µJ laser energy at QE=0.3%.
Losses due to light polarization: 2
Losses in laser transport: 1.1
Surface photovoltage: 1.5
Average laser power 220 watts. Duty 10ns/100ns
Peak laser power 2.2kW.
Laser R&D required (or gang 10 lasers).

Brookhaven Science Associates

EIC Electron Cooling

- Electron cooling is a must in the lower energy machines
- It is well established at low energy, but:
 - New accelerator technology (ERL)
 - Operation in a collider was not done

Durham, December 6-7, 2001

Science Associates

RHIC Gold e-Cooling (Top: no cooling) Vasily Parkhomchuk.

High-Energy Electron-Cooling Issues

- We need high-precision manufacturing and alignment of a long superconducting solenoid
- We have to operate high-current electron ERL (50 MeV, but 50 to 100 mA)
- How to generate, transport and match a "magnetised" beam without continuous magnetic field
- How to de-bunch (then re-bunch) the beam to obtain low energy spread
- Will the electron-cooling permit an increase in tune-shift parameters?
- We have to calculate the cooler performance, possibly introduce some of new variants

Brookhaven Science Associates

Primary eRHIC parameters:

Parameter	Units	Value
Maximum gold energy, E _{Au}	[GeV/u]	100
Maximum proton energy, E _p	[GeV]	250
Maximum elect. energy, E_e	[GeV]	10
Number of collision points		6
Circumference	C [m]	3833
Revolution freq., F _{rev}	[kHz]	78.3
Dipole bend radius, ρ	[m]	243

Brookhaven Science Associates

EIC: Ring-ring using RHIC in-tunnel version, full energy injection linac shown

Brooknaven Science Associates Ilan Ben-Zvi, IPPP Workshop on Future of Lepton-Nucleon Scattering Durham, December 6-7, 2001

BRONKHA

ATIONAL LABORA

THE EIC LINAC-RING OPTION

A linac-ring collider can provide the same or greater luminosity and C.M. energy as a ring-ring collider. No positrons. Why use a linac? The e⁻ polarization can be somewhat higher (R&D needed on both linac and ring polarization). Polarization may switched fast at will. • The energy may be changed rapidly and over a large range without losing polarization. The linac maintains the high luminosity and polarization at lower energies, the ring not so. The linac achieves the same luminosity with a lower current, thus less synchrotron radiation in the detector. Naturally round beam, small emittance. Ilan Ben-Zvi, IPPP Workshop on

Brooknaven Science Associates

Energy Recovering Linac – the ticket to high-current

The J-Lab Energy Recovering Linac

- Linac energy recovery extremely good (loss < 0.02%)
- 5 mA average current, limit e-gun.
- ~200 mA is believed to be possible without feedback, well over 200 mA with B-factory style feedback.

Brookhaven Science Associates

The Superconducting Electron Linac

- Extremely well known (JLAB, DESY, industry)
- R/Q=1036Ω, L=1.038m
- Take conservatively Q₀=1.5x10¹⁰ at 2K, 20MV/m
- Refrigeration power 26 W/structure
- **5**00 cavities \rightarrow 13kW refrigeration
- HOM power: (Merminga et. al., LINAC2000) At eRHIC, due to the 20 ps pulse length, this is not a problem.

Brookhaven Science Associates

The recirculator ring option

- A suggestion by Derbenev (JLAB) to use a recirculator ring:
- Electron bunches are accelerated to full energy by a linac, stored a few hundred revolutions in a recirculating ring and dumped.
- All the advantages of the linac:
 - High polarization at any energy
 - Large beam-beam parameter
 - High luminosity at any energy
- Linac current is much lower.
- Needs to be studied!

Brookhaven Science Associates

Luminosity issues: lons.

- Other limitations affect the maximum number of ion bunches in RHIC (electron cloud, cryogenic losses).
 360 seems OK.
- Minimum bunch spacing at the detectors. 360 seems OK.
- IBS and cooling: Cooling is essential otherwise the luminosity lifetime will be unacceptably short.
- Laslett space charge tune shift

$$\Delta Q_{SC} \approx -\frac{N_i}{\varepsilon_i} \frac{C}{\sigma_{iz} \beta \gamma^2} \frac{r_i}{2(2\pi)^{3/2}} \approx 0.1$$

Brookhaven Science Associates

Luminosity issues: Electrons

- Ring: Linear power density in dipoles places a restriction on the maximum current e ring.
- Ring: Beam-beam limit lower than linac.
- Linac: Multipass Multibunch Instability (~100 to 200 mA), but With B-factory style feedback expect large improvement.
- Linac: HOM power deposition in cavities, a few kW per cavity but only a few watts on cold surfaces.
- Linac: Beam-beam induced head tail instability.

 $D_{e}\xi_{i} \leq 4V_{s} \quad D_{e} = \frac{Zr_{e}N_{i}\sigma_{zi}}{\gamma_{e}\sigma_{i}^{*2}}$ Ilan Ben-Zvi, IPPP Workshop on

Brookhaven Science Associates

Common parameters

Parameter	Units	Value	
Ring Circumference	m	3833	
Number of bunches		360	
Bunch spacing	ns	35.5	
Proton energy	GeV	250	
Gold energy	GeV/A	100	
Electron energy	GeV	10	

Brookhaven Science Associates

Parameters for eRHIC at full energy

Scenario		Linac-Ring		Ring-Ring			
Species		Р	Au	Р	Au		
Luminosity	x10**31	100.0	1.0	25.0	0.7		
sigma*	microns	32.0	32.0	40.0	50.0		
Ion parameters							
# / bunch	1.00E+09	200.0	1.2	94.0	1.2		
Emittance	microns	0.9	0.5	0.8	1.0		
Laslett	x0.001	6.0	5.3	3.0	3.0		
Beam-beam	1 x 0.001	4.0	4.0	4.0	4.0		
beta*	cm	31.0	21.0	53.0	27.0		
Electron parameters							
# / bunch	1.00E+10	2.9	4.8	2.6	8.1		
Emittance	nm	6.0	6.0	18.0	18.0		
Beam-beam	x 0.001	382.0	180.0	60.0	60.0		
beta*	cm	17.0	19.0	8.9	13.9		

Brookhaven Science Associates

Summary

- A few machine options all look feasible
 Exciting performance
- Large collaboration formed

Brookhaven Science Associates

What next?

MIT Workshop - Need R&D on:

- Electron cooling
- Polarized electron source
- Integration of IP into machine lattice
- White paper has been written and the idea received wide support by the nuclear physics community
- A new EIC Workshop will be held at BNL on the last week of February, 2002. Nuclear physics (3 days) preceded by accelerator physics (2 days).

Brookhaven Science Associates

