Future Physics with HERA

- Measuring hadron structure.
- Nucleon spin.
- Approaching the confinement region.
- Studying parton radiation.
- Generalised parton distributions.
- High parton densities.
- Physics beyond the standard model at HERA.
- Summary.

Deep Inelastic Scattering

Describe in terms of: Q² = -q², x = Q²/(2p \cdot q) and y = p \cdot q/(p \cdot k) Cross section for Q² < M_Z²: d² \sigma_{ep \rightarrow eX}}{dx dQ^{2}} = 4 \frac{4 \pi \alpha^{2}}{xQ^{4}} (y^{2} x F_{1}(x, Q^{2})) + (1 - y)F_{2}(x, Q^{2})) = p + (1 - y)F_{2}(x, Q^{2})) = p + (1 - y)F_{2}(x, Q^{2}) + (1 - y)F_{2}(x, Q^{2})) = p + (1 - y)F_{2}(x, Q^{2}) = q + (1 - y)F_{

Structure functions related to quark densities:

$$F_{2}(x,Q^{2}) = 2xF_{1}(x,Q^{2})$$

= $x\sum_{q} e_{q}^{2} (q(x,Q^{2}) + \overline{q}(x,Q^{2}))$

Measuring hadron structure

- Current HERA inclusive data beautifully described by QCD.
- Fit using NLO DGLAP formalism allows determination of parton distribution functions and α_S.

Measuring hadron structure

- E.g. from H1: $\alpha_{s}(M_{z}^{2}) = 0.1150 \pm 0.0017(exp.)$ $^{+0.0009}_{-0.0005}(mod.) \pm 0.005(scale)$
- Measured PDFs not full story.
- Rise at low x must be tamed.
- How can this be measured? Return to this later!
- Assumption: sea quarks produced via $g \rightarrow q\overline{q}$.
- Plausible as both $m_u \sim 3 \text{ MeV}$ and $m_d \sim 6 \text{ MeV} \ll \Lambda_{QCD}$.

Measure $\overline{d} - \overline{u}$

Surprise...

- Global fits assume $\overline{d} = \overline{u}$ at small x!
- How can this be studied?

- Recall for proton
 - $F_2^{p} = x\left(\frac{4}{9}u_v + \frac{1}{9}d_v + \frac{8}{9}\overline{u} + \frac{2}{9}\overline{d}\right)$
- Hence neutron given by $F_2^{p} = x \left(\frac{1}{9} u_v + \frac{4}{9} d_v + \frac{2}{9} \overline{u} + \frac{8}{9} \overline{d} \right)$
- Can extract $\overline{d} \overline{u}$ from $\frac{1}{2} \left(F_2^{p} + F_2^{n} \right) - F_2^{p}$
 - $= x \left(\frac{1}{6} d_{v} \frac{1}{6} u_{v} + \frac{1}{3} \overline{d} \frac{1}{3} \overline{u} \right)$
 - $\approx \frac{1}{3} x \left(\overline{d} \overline{u} \right)$ at low x.
- But "nucleon structure" $F_2^{N} = \frac{1}{2} \left(F_2^{p} + F_2^{n} \right) \approx \frac{1}{2} F_2^{D}$

Need high energy eD experiment!

Shadowing

- Why $F_2^{D} \neq F_2^{p} + F_2^{n}$?
- Partons have momentum xp.
- Hence localised within 1/xp.
- At small x partons (gluons) from proton overlap with those from neutron, recombination can occur.
- Hence $F_2^{D} < F_2^{p} + F_2^{n}$ at low x.
- Fusion produces partons with larger x, so in high x region $F_2^{D} > F_2^{p} + F_2^{n}$

Problem for $\overline{d} = \overline{u}$ measurement?

Measuring $\overline{d} - \overline{u}$

• Measure and correct in extraction of $\overline{d} - \overline{u}$.

Spin structure measurements

- Use polarised target and polarised electron beam.
- Extract asymmetry

$$A = \left(\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}\right) / \left(\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}\right)$$
$$\approx \frac{\sum e_{q}^{2} \left(q_{+}(x) - q_{-}(x)\right)}{\sum e_{q}^{2} \left(q_{+}(x) + q_{-}(x)\right)}$$

$$\approx \frac{g_1(x)}{F_1(x)}$$

$$g_{1}(x) = \frac{1}{2} \sum e_{q}^{2} \left(q^{+}(x) - q^{-}(x) \right)$$

$$F_{1}(x) = \frac{1}{2} \sum e_{q}^{2} \left(q^{+}(x) + q^{-}(x) \right) = \frac{1}{2} \sum e_{q}^{2} q(x)$$

Spin structure measurements

- Proton spin given by $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$
- Current world data suggest spin carried by quarks $\Delta\Sigma \sim 0.15...0.2$
- Remainder carried by gluons, orbital angular momentum?
- Can measure gluon contribution by studying Q^2 evolution of $g_1(x,Q^2)$.

Spin structure measurements

NLO QCD fit gives:

Spin at HERA

- $g_1(x,Q^2)$ can be measured down to small x.
- Q² range of measurements extended by orders of magnitude.
 - Allows extraction of ΔG , $\Delta \Sigma$.

Spin at HERA

Can also "tag" gluon events.

- Allows "direct" measurement of ΔG down to low x.
- Is it possible to measure contribution of L?

Precision achievable:

Test QCD evolution schemes

Interference effects give rise to angular ordering of partons.

- Treated in various approximations
 - DGLAP $\theta_1 < \theta_2 < \theta_3 \cdots$ $\rightarrow k_{T1} < k_{T2} < k_{T3} \cdots$ valid at large Q².
 - BFKL $\theta_1 < \theta_2 < \theta_3 \cdots$ $\rightarrow x_1 > x_2 > x_3 \cdots$ valid at small x.
- CCFM equation contains angular ordering.

Forward π^0 production

- Select energetic forward pions, with $k_{T\pi} \sim Q^2$, in low x DIS events.
- Simple DGLAP description fails.
- BFKL reasonable agreement.
- CCFM fails.
- Jet results similar.
- Parton radiation at low x not well understood!

Approaching the confinement region

Approaching the confinement region

Indications that nature of radiation in proton changes below scale ~ 1 GeV²?

Simple partonic picture of proton breaks down at same scale.

Approaching the confinement region

- Study gluon distribution by measuring $F_L(x,Q^2)$.
- Indication of new scale of proton structure?
- "Collective behaviour" of partons?
- Experimental hint at relationship between current and constituent quarks?

Using $m_u = m_d = 363 \text{ MeV}$ $m_u = 538 \text{ MeV}$		
$\frac{\text{III}_{s} - J}{\text{Baryon}}$ (mass in MeV)	Composition (q = u, d)	Predicted mass (MeV)
N(939)	qqq	939
Λ(1116)	qqs	1114
Σ(1193)	qqs	1179
Ξ(1318)	qss	1327
Δ(1232)	qqq	1239
Σ(1384)	qqs	1381
Ξ(1533)	qss	1529
Ω(1672)	SSS	1682

Collective phenomena – diffraction

Interaction with colourless component of the proton.

- Measurements and QCD analysis of F₂^D show "pomeron" structure is gluon dominated.
- Colourless nature implies at least two gluons involved.

DVCS and generalised parton distributions

 DVCS ideal process for investigation of collective phenomena.

Interference with:

- Extract generalised parton distributions (GPDs).
- GPDs encode spatial distribution of partons in nucleon.
 - "Impact parameter" dependence of parton distributions?
- Needed for description of hadronhadron collisions at LHC energies?

Multiple interactions

 PDF including impact parameter dependence in Pythia describes Tevatron multiple interaction data.

Gluons at high density

- Overlap of gluons from different nucleons in nucleus leads to high parton densities within kinematic reach of HERA.
- Study effects analogous to those that tame rise of F₂(x,Q²), shadowing.
- Note, below x = 0.01, mean Q^2 of current data < 2 GeV².

Nuclear parton distributions

• C.f. accuracy of HERA and current results:

Extend to determination of nuclear PDFs.

Space-time correlations in QCD

- Use nucleus as "vertex detector".
- Virtual photon fluctuates into $q\overline{q}$ pair of size ~ 1/Q, travels distance L = $\frac{1}{2m_A x}$.

 Measure energy loss of partons, dependence on distance traversed, broadening of p_T spectra.

- Energy loss in quark gluon plasma larger than in "cold" nuclear medium.
- HERA can probe kinematics similar to heavy ion collisions at RHIC/LHC.
 - Comparison of eA and heavy ion results will improve understanding of signatures for "hot" QCD matter.

Searches for new physics

Leptons and quarks connected through new interaction?

- Competition from Tevatron,
 but HERA phase space
 uncovered for:
 - Lepton flavour violation.
 - Excited quarks and leptons.
 - Quark substructure.

- R-parity violating SUSY.
- Leptoquarks.
- Current HERA results from $\sim 20 \text{ pb}^{-1} \text{ e}^{-}\text{p}$ data: SCALAR LEPTOQUARK $e^{-}u \rightarrow LQ \rightarrow e^{-}X, \forall X$

Searches for new physics

- Can increase beam energies to further extend HERA discovery reach.
 - − $E_e 27.5 \text{ GeV} \rightarrow 30 \text{ GeV}.$
 - − E_p 920 GeV → 1000 GeV.
 - $-\sqrt{s} = 318 \text{ GeV} \rightarrow 346 \text{ GeV}.$

Summary

- Many aspects of QCD still incompletely understood.
 - Complete map of partonic structure of nucleons.
 - Partonic origins of nucleon spin.
 - Connection between constituent and current quarks.
 - Parton radiation patterns.
 - QCD at high density
- HERA is unique facility for study of these problems.
- Further potential for discovery of new physics still to be exploited.