Department of Physics
Year 1 Tutorials
UNiversitrof
Module Phys 123
Electricity and Magnetism

Answers for Tutorial 5

The marks to be awarded for each question are indicated in square brackets.

Problem 1 [5]

$\mathrm{I}=5 \mathrm{~A}$, so $\mathrm{I}_{\mathrm{rms}}=5 / \sqrt{ } 2=3.54 \mathrm{~A}$.
Average power $\mathrm{P}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R}=5^{2} / 2 \times 10=125 \mathrm{~W}$.
Problem 2 [10]
$E=30 \mathrm{~V}$.
$\mathrm{f}=1 \mathrm{kHz}$, so $\omega=2 \pi \mathrm{f}=6.28 \times 10^{3} \mathrm{rad} / \mathrm{sec}$
a) $\mathrm{I}=\mathrm{E} / \mathrm{R}=30 / 50=0.6 \mathrm{~A}$. [1]
$\mathrm{P}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R}=(0.6 / \sqrt{2})^{2} \times 50=9 \mathrm{~W}$.
[1]
b) For inductor, $\mathrm{I}=\mathrm{E} / \omega \mathrm{L}=30 /\left(6.28 \times 10^{3} \times 0.25\right)=0.0191 \mathrm{~A}$.

No power dissipated in inductor.
[2]
c) For capacitor, $I=E\left((1 / \omega C)=30 \times 6.28 \times 10^{3} \times 1.5 \times 10^{-6}=0.283 \mathrm{~A}\right.$.

No power dissipated in capacitor.
[2]

Problem 3 [5]

a) The current leads the voltage, i.e. the current peaks before the voltage.
b) As the current leads the voltage, the phase ϕ in the expression $\mathrm{i}=\mathrm{I} \sin (\omega \mathrm{t}-\phi)$ is negative. As this phase is given by $\phi=\tan ^{-1}((\omega \mathrm{~L}-1 / \omega \mathrm{C}) / \mathrm{R})$, the capacitive reactance $1 / \omega \mathrm{C}$ is larger than the inductive reactance $\omega \mathrm{L}$: the circuit is predominantly capacitive.
(Alternatively, i leads v, so from the mnemonic CiviL the circuit is capacitively dominated, the same conclusion is reached from the mnemonic $\mathcal{E L i}$ is positively the iCE man!)
c) The phase is negative below the resonant frequency and positive above, so from the above, the frequency is below the resonant frequency.

Problem 4 [15]

$$
\begin{align*}
& \text { a) } \begin{array}{l}
\mathrm{X}_{\mathrm{C}}=1 / \omega_{\mathrm{d}} \mathrm{C}=1 /\left(2 \times 10^{6} 1 \times 10^{-9}\right)=500 \Omega . \\
\mathrm{X}_{\mathrm{L}}=\omega_{\mathrm{d}} \mathrm{~L}=2 \times 10^{6} \times 10 \times 10^{-6}=20 \Omega . \\
\text { b) } \quad \phi=\tan ^{-1}\left(\frac{\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}}{\mathrm{R}}\right)=\tan ^{-1}\left(\frac{20-500}{10}\right)=-88.8^{\circ} \text { or }-1.55 \mathrm{rad}
\end{array} \text {. } \tag{2}
\end{align*}
$$

Phase is negative, so current leads voltage by 88.8°
c) $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{L}-1 / \omega_{\mathrm{d}} \mathrm{L}\right)^{2}}=480 \Omega$ (contribution of resistance negligible).
d) Sketch of shape of resonance.

The current i has a maximum value of $\mathrm{I}=\mathcal{E} / \mathrm{R}=10 / 10=1 \mathrm{~A}$,
at the resonant frequency $\omega=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \times 10^{-9} \times 10 \times 10^{-6}}=10^{7} \mathrm{radsec}^{-1}$.

Maximum possible number of marks for this tutorial is 35 .

