Module Phys 123
Electricity and Magnetism

Answers for Tutorial 3

The marks to be awarded for each question are indicated in square brackets.

Problem 1 [10]

Magnitude of electric field $\mathrm{E}=\sqrt{1^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{6}=2.45 \mathrm{Vm}^{-1}$
Distance moved $r=\sqrt{3^{2}+2^{2}+(-1)^{2}}=\sqrt{14}=3.74 \mathrm{~m}$
Work done $\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{r}}=\mathrm{q} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{r}}$
Hence $\mathrm{W}=7 \times 10^{-9} \times(3 \times 1+2 \times(-2)+(-1) \times(-1))=0$
No work done because movement of charge is perpendicular to direction of E field
Problem 2 [10]
Vector describing particle's motion $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}$
$\stackrel{\rightharpoonup}{\mathrm{r}}=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ -3\end{array}\right) \mathrm{m}$
Work done $\mathrm{W}=\mathrm{q} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \stackrel{\rightharpoonup}{\mathrm{r}}=9 \times 10^{-6} \times(-4+0+3)=-9 \times 10^{-6} \mathrm{~J}$
Angle θ from $\cos \theta=\frac{\stackrel{\rightharpoonup}{\mathrm{E}} \cdot \overrightarrow{\mathrm{r}}}{|\stackrel{\mathrm{E}}{\mathrm{E}}||\overrightarrow{\mathrm{r}}|}=\frac{-4+0+3}{\sqrt{4+4+1} \sqrt{4+0+9}}=-0.0925$
Hence $\theta=1.66 \mathrm{rad}$ or 95.1°

Problem 3 [5]

Torque $\vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}$

$$
\stackrel{\rightharpoonup}{\mathrm{p}} \times \stackrel{\rightharpoonup}{\mathrm{E}}=\left|\begin{array}{ccc}
\hat{\mathrm{x}} & \hat{\mathrm{y}} & \hat{\mathrm{z}} \tag{2}\\
-1 & 2 & 1 \\
3 & 1 & -1
\end{array}\right|=\left(\begin{array}{c}
-3 \\
2 \\
-7
\end{array}\right) \mathrm{Nm}
$$

Problem 4 [10]

Potential energy $\mathrm{U}_{1}=\mathrm{qV}(1,2,0)=3 \times 10^{-3} \times\left(1^{2}+2 \times 1 \times 2+2-1 \times 0^{2}\right)=21 \times 10^{-3} \mathrm{~J}$
Potential energy $\mathrm{U}_{2}=\mathrm{qV}(0,3,1)=3 \times 10^{-3} \times\left(0^{2}+2 \times 0 \times 3+3-0 \times 1^{2}\right)=9 \times 10^{-3} \mathrm{~J}$
Change in potential energy $\Delta \mathrm{U}=\mathrm{U}_{2}-\mathrm{U}_{1}=9 \times 10^{-3}-21 \times 10^{-3}=-12 \times 10^{-3} \mathrm{~J}$

Problem 5 [15]

Electric field $\overrightarrow{\mathrm{E}}=-\nabla \mathrm{V}=\left(\begin{array}{c}-\frac{\partial}{\partial \mathrm{x}} 240 \mathrm{y} \\ -\frac{\partial}{\partial y} 240 \mathrm{y} \\ -\frac{\partial}{\partial z} 240 \mathrm{y}\end{array}\right)=\left(\begin{array}{c}0 \\ -240 \\ 0\end{array}\right) \mathrm{Vm}^{-1}$
The electric field is uniform, has a magnitude of $240 \mathrm{Vm}^{-1}$ and points in the -ive y direction

Change in potential energy
$\Delta \mathrm{U}=\mathrm{q}(\mathrm{V}(0.3,0.3,0.1)-\mathrm{V}(0.1,0.2,0.3))=7 \times 10^{-3} \times(240 \times 0.3-240 \times 0.2)=0.168 \mathrm{~J}$
Work done $\mathrm{W}=\mathrm{q} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot\left(\stackrel{\mathrm{r}}{3}-\stackrel{\rightharpoonup}{\mathrm{r}}_{1}\right)$
$\mathrm{W}=7 \times 10^{-3}\left(\begin{array}{c}0 \\ -240 \\ 0\end{array}\right) \cdot\left(\left(\begin{array}{l}0.3 \\ 0.3 \\ 0.1\end{array}\right)-\left(\begin{array}{c}0.1 \\ 0.2 \\ 0.3\end{array}\right)\right)=7 \times 10^{-3}\left(\begin{array}{c}0 \\ -240 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}0.2 \\ 0.1 \\ -0.2\end{array}\right)=-0.168 \mathrm{~J}$
Hence the work done appears as the change in potential energy of the system
The work done is independent of the path taken, so the result must be the same despite the intermediate step

The maximum total mark for this Tutorial is 50 .

