Answers for Tutorial 2

The marks to be awarded for each question are indicated in square brackets.

Problem 1 [5]

The E field must be directed upwards so that the electrostatic force counteracts the proton's weight.[2]

The magnitude of the E field is given by:
$\mathrm{q}_{\mathrm{p}} \mathrm{E}=\mathrm{m}_{\mathrm{p}} \mathrm{g} \Rightarrow \mathrm{E}=\frac{\mathrm{m}_{\mathrm{p}} \mathrm{g}}{\mathrm{q}_{\mathrm{p}}}=\frac{1.67 \times 10^{-27} \times 9.81}{1.60 \times 10^{-19}}=1.02 \times 10^{-7} \mathrm{~V} \mathrm{~m}^{-1}$.
Problem 2 [5]
Using Gauss' law: $\Phi=\frac{\mathrm{q}}{\varepsilon_{0}}=\frac{2 \times 10^{-6}}{8.85 \times 10^{-12}}=2.26 \times 10^{5} \mathrm{NC}^{-1} \mathrm{~m}^{-2}$.
Electric flux is same for cube.
Flux through each of six faces is same, i.e. $\Phi_{\text {face }}=\frac{2.26 \times 10^{5}}{6}=3.77 \times 10^{4} \mathrm{NC}^{-1} \mathrm{~m}^{-2}$.
Results not affected by size of cube.
Problem 3 [10]

$\Phi_{\text {top }}=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}=-\mathrm{EA}=-60 \times 100^{2}=60 \times 10^{4} \mathrm{NC}^{-1} \mathrm{~m}^{-2}$.

$$
\begin{equation*}
\Phi_{\text {bot }}=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{~A}}=\mathrm{EA}=100 \times 100^{2}=100 \times 10^{4} \mathrm{NC}^{-1} \mathrm{~m}^{-2} . \tag{2}
\end{equation*}
$$

Hence, the net outward flux is $40 \times 10^{4} \mathrm{NC}^{-1} \mathrm{~m}^{-2}$.

Enclosed charge q from: $\Phi=\frac{\mathrm{q}}{\varepsilon_{0}} \Rightarrow \mathrm{q}=\varepsilon_{0} \Phi=8.85 \times 10^{-12} \times 40 \times 10^{4}=3.54 \mu \mathrm{C}$.
Problem 4 [20]

Similar situation to that discussed in Tutorial 1, problem 2. Directions of fields due to charges of 1 nC and 3 nC and charges of 2 nC and 4 nC as illustrated above,
$\left|\stackrel{\rightharpoonup}{\mathrm{E}}_{13}\right|=\left|\stackrel{\rightharpoonup}{\mathrm{E}}_{24}\right|=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \times 10^{-9}}{(0.05 \sqrt{2})^{2}}=3.60 \times 10^{3} \mathrm{Vm}^{-1}$.
Adding these gives the resultant field with direction as shown in the diagram. The magnitude of this field is $|\stackrel{\rightharpoonup}{\mathrm{E}}|=\sqrt{2} \times\left|\stackrel{\rightharpoonup}{\mathrm{E}}_{13}\right|=5.09 \times 10^{3} \mathrm{Vm}^{-1}$.

The potential is given by

$$
\begin{equation*}
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{q}_{2}}{\mathrm{r}_{2}}+\frac{\mathrm{q}_{3}}{\mathrm{r}_{3}}+\frac{\mathrm{q}_{4}}{\mathrm{r}_{4}}\right)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1 \times 10^{-9}}{0.0707}+\frac{2 \times 10^{-9}}{0.0707}+\frac{3 \times 10^{-9}}{0.0707}+\frac{4 \times 10^{-9}}{0.0707}\right)=1270 \mathrm{~V} \tag{3}
\end{equation*}
$$

If the ordering changes as shown below, then, as illustrated, the direction of the E field changes, but the magnitude of the field and the value of the potential at the centre of the square remain the same.

Place 1 nC charge first, no work must be done so no potential energy. This charge generates potential $\mathrm{V}_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}}$.
(The value of V_{1} at the position of the second charge is 89.9 V)
Then bring in 2 nC charge. Potential energy due to its position in potential of $1^{\text {st }}$ charge is

$$
\begin{equation*}
\mathrm{U}_{12}=\mathrm{q}_{2} \mathrm{~V}_{1}=\mathrm{q}_{2} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1}}{\mathrm{r}}=2 \times 10^{-9} \times 8.99 \times 10^{9} \times \frac{1 \times 10^{-9}}{0.01}=1.80 \times 10^{-7} \mathrm{~J} \tag{2}
\end{equation*}
$$

Choosing r_{1} and r_{2} appropriately, these two charges generate a potential
$\mathrm{V}_{12}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{q}_{2}}{\mathrm{r}_{2}}\right)$.
(The value of V_{12} at the position of the third charge is 243 V .)
Now bring up the third charge, potential energy is:

$$
\begin{equation*}
\mathrm{U}_{123}=\mathrm{q}_{3} \mathrm{~V}_{12}=3 \times 10^{-9} \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1 \times 10^{-9}}{0.1414}+\frac{2 \times 10^{-9}}{0.1}\right)=7.19 \times 10^{-7} \mathrm{~J} \tag{2}
\end{equation*}
$$

These three charges generate a potential $V_{123}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{q}_{2}}{\mathrm{r}_{2}}+\frac{\mathrm{q}_{3}}{\mathrm{r}_{3}}\right)$.
(The value of V_{123} at the position of charge 4 is 487 V .)
Bringing in the final charge results in a potential energy given by:

$$
\begin{equation*}
\mathrm{U}_{1234}=\mathrm{q}_{4} \mathrm{~V}_{123}=4 \times 10^{-9} \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1 \times 10^{-9}}{0.1}+\frac{2 \times 10^{-9}}{0.1414}+\frac{3 \times 10^{-9}}{0.1}\right)=19.5 \times 10^{-7} \mathrm{~J} \tag{2}
\end{equation*}
$$

Adding up these contributions to the potential energy gives

$$
\begin{equation*}
\mathrm{U}=\mathrm{U}_{12}+\mathrm{U}_{123}+\mathrm{U}_{1234}=2.86 \times 10^{-6} \mathrm{~J} . \tag{1}
\end{equation*}
$$

The maximum total mark for this Tutorial is 40 .

