## Lecture 20

- In this lecture we will look at:
- Series LCR circuit.
- Resonance.
- Transients.
- Power in AC circuits.
- After this lecture, you should be able to answer the following questions:
- What is the impedance of a resistance R , an inductance L and a capacitance C connected in series?
- Describe how the capacitive and inductive reactances change as the frequency of the sinusoidal signal driving a series LCR circuit increases from well below the circuit's resonant frequency to well above it.
- Explain the difference between the amplitude of an AC current and the rms value of the current. Why is the rms value a useful quantity?


## Series LCR Circuit

- Have looked at AC circuits containing $\mathrm{L}, \mathrm{C}$ and R separately.
- What happens when all are present, connected in series?

- Same current flows through all components.
- Draw phasors for circuit, first current, $\mathrm{i}=\mathrm{I} \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)$ :

- Now phasors for $\mathrm{v}_{\mathrm{R}}, \mathrm{v}_{\mathrm{C}}$ and $\mathrm{v}_{\mathrm{L}}$, with the phase relationships: i same as $\mathrm{v}_{\mathrm{R}}$; $i$ leads $\mathrm{v}_{\mathrm{C}}$ by $\pi / 2$; i lags $\mathrm{v}_{\mathrm{L}}$ by $\pi / 2$.



## Series LCR Circuit

- Phasor for emf:

- From the loop rule $\mathcal{E}=\mathrm{v}_{\mathrm{R}}+\mathrm{v}_{\mathrm{C}}+\mathrm{v}_{\mathrm{L}}$.
- Hence sum of phasors for $v_{L}, v_{C}$ and $\mathrm{v}_{\mathrm{R}}$ must give phasor for emf:

- Phasors for $\mathrm{v}_{\mathrm{L}}$ and $\mathrm{v}_{\mathrm{C}}$ have opposite directions, so mag. of sum is $V_{L}-V_{C}$.
- From Pythagoras' theorem,

$$
\mathcal{E}_{\mathrm{m}}^{2}=\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2} .
$$

- Remember $\mathrm{V}_{\mathrm{R}}=\mathrm{IR}, \mathrm{V}_{\mathrm{C}}=\mathrm{I} \mathrm{X}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{L}}=\mathrm{I} \mathrm{X}_{\mathrm{L}}$, so: $\mathcal{E}_{\mathrm{m}}{ }^{2}=(\mathrm{IR})^{2}+\left(\mathrm{IX}_{\mathrm{L}}-\mathrm{IX}_{\mathrm{C}}\right)^{2}$.
- Rearranging allows us to determine the amplitude of the current:

$$
\begin{equation*}
I=\frac{\mathcal{E}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}}=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{Z}} \tag{20.1}
\end{equation*}
$$

- Here we have defined the impedance:

$$
\begin{align*}
\mathrm{Z} & =\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
& =\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}} \tag{20.2}
\end{align*}
$$

## Series LCR Circuit

- What about the relative phase of the current and the voltage?
- Look again at the LCR phasor diagram:

- We see $\tan \phi=\frac{\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{R}}}$

$$
\begin{align*}
& =\frac{I X_{L}-I X_{C}}{I R} \\
& =\frac{X_{L}-X_{C}}{R} \tag{20.3}
\end{align*}
$$

■ Now look at some LCR circuits.

- All with $\mathcal{E}_{\mathrm{m}}=325 \mathrm{~V}, \mathrm{f}=50 \mathrm{~Hz}$ :
- $\mathrm{R}=3 \Omega, \mathrm{C}=100 \mathrm{mF}, \mathrm{L}=10 \mathrm{mH}$ so $\mathrm{X}_{\mathrm{C}}=0.032 \Omega$ and $\mathrm{X}_{\mathrm{L}}=3.14 \Omega$.



## Series LCR Circuit

- $\mathrm{R}=3 \Omega, \mathrm{C}=1 \mathrm{mF}, \mathrm{L}=0.1 \mathrm{mH}$ so $\mathrm{X}_{\mathrm{C}}=3.18 \Omega$ and $\mathrm{X}_{\mathrm{L}}=0.031 \Omega$.

- $\mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}$, more inductive than capacitive, $\phi+$ ive, i lags v.
- $X_{C}>X_{L}$, more capacitive than inductive, $\phi$-ive, i leads v.
- $\mathrm{R}=3, \mathrm{C}=1 \mathrm{mF}, \mathrm{L}=10 \mathrm{mH}$ so
$\mathrm{X}_{\mathrm{C}}=3.18 \Omega$ and $\mathrm{X}_{\mathrm{L}}=3.14 \Omega$.

- $\mathrm{X}_{\mathrm{L}} \approx \mathrm{X}_{\mathrm{C}}$.
- Notice current large and $\phi \approx 0$.


## Series LCR Circuit: Resonance

- Remember:

$$
I=\frac{E_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
$$

- Resonance (maximum amplitude of current) when:
$\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$
- Recall also:
$\tan \phi=\frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}$.
- See $\tan \phi=0$, and hence $\phi=0$, when $X_{L}=X_{C}$.
- Can also change relationship between capacitive and inductive reactances by changing frequency at which circuit is driven.
- Current amplitude given by:

$$
\mathrm{I}=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{Z}}=\frac{\mathcal{E}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}}
$$

■ Maximum when:

$$
\begin{equation*}
\omega_{\mathrm{d}} \mathrm{~L}-\frac{1}{\omega_{\mathrm{d}} \mathrm{C}}=0 \Rightarrow \omega_{\mathrm{d}}=\frac{1}{\sqrt{\mathrm{LC}}} \tag{20.5}
\end{equation*}
$$

- Recall natural frequency of LCR circuit is:

$$
\omega^{\prime}=\sqrt{\omega^{2}-(\mathrm{R} / 2 \mathrm{~L})^{2}} \approx \omega
$$

where $\omega=1 / \sqrt{\text { LC }}$

## Resonance and Phase

- Plot current amplitude as function of $\mathrm{r}=\omega_{\mathrm{d}} / \omega$, for $\mathrm{R}=2,0.5$ and $0.2 \Omega$ :

- Maximum always when $\omega_{\mathrm{d}} \approx \omega$, but sharpness of resonance changes.
- Phase also change as frequency varies:

- Phase increases from $-\pi / 2$, through zero as frequency passes through resonance, to $+\pi / 2$.


## Transients

- Note, when the emf is first applied, it can take some time for the current to settle down to the steady state described by the equation $i=I \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)$.
- The additional current that flows initially is called the transient current.
- The speed with which the transient current dies out is determined by the time constants of the circuit $\tau=\mathrm{L} / \mathrm{R}$ and $\tau=\mathrm{RC}$.
- Example of behaviour that might be observed in LCR circuit at "start-up":



## Power in AC Circuits

- In LCR circuit energy is shifted between C and L (i.e. E and B fields) and lost to the circuit through the R.
■ If have emf, this replaces energy lost through R.
- Power dissipated in R given by: $P=i^{2} R=I^{2} \sin ^{2}\left(\omega_{d} t-\phi\right) R$.
- Mean rate of energy loss is this averaged over time.
- From plot opposite, see average value of $\sin ^{2} \theta,\left\langle\sin ^{2} \theta\right\rangle=1 / 2$, so:

$$
P_{\text {avg }}=I^{2} R\left\langle\sin ^{2}\left(\omega_{d} t-\phi\right)\right\rangle
$$

$$
\begin{equation*}
=\frac{\mathrm{I}^{2} \mathrm{R}}{2} \tag{20.6}
\end{equation*}
$$

- Plot of $\sin \theta$ and $\sin ^{2} \theta$ :

- Introducing the quantity

$$
\mathrm{I}_{\mathrm{rms}}=\mathrm{I} / \sqrt{ } 2
$$

we can write:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{avg}}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R} \tag{20.8}
\end{equation*}
$$

## Power in AC Circuits

- Similarly define $\mathrm{V}_{\mathrm{rms}}=\mathrm{V} / \sqrt{ } 2 \quad$ [20.9] $\quad$ Using this we can recast the and $\mathcal{E}_{\text {rms }}=\mathcal{E}_{\mathrm{m}} / \sqrt{ } 2 \quad[20.10] \quad$ expression for the average power:
- Remember we have:

$$
\mathrm{I}=\frac{\mathcal{E}_{\mathrm{m}}}{\mathrm{Z}}=\frac{\mathcal{E}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}} .
$$

- We can divide through by $\sqrt{ } 2$ to get:

$$
\frac{I}{\sqrt{2}}=\frac{\mathcal{E}_{\mathrm{m}} / \sqrt{2}}{Z}=\frac{\mathcal{E}_{\mathrm{m}} / \sqrt{2}}{\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}}
$$

- So we can write:

$$
\begin{align*}
I_{\mathrm{rms}}=\frac{\mathcal{E}_{\mathrm{rms}}}{Z}=\frac{\mathcal{E}_{\mathrm{rms}}}{\sqrt{\mathrm{R}^{2}+\left(\omega_{\mathrm{d}} \mathrm{~L}-1 / \omega_{\mathrm{d}} \mathrm{C}\right)^{2}}} . \quad & \text { So } \cos \phi=\frac{V_{\mathrm{R}}}{\mathcal{E}_{\mathrm{m}}}=\frac{\mathrm{IR}}{\mathrm{IZ}}=\frac{\mathrm{R}}{\mathrm{Z}}  \tag{20.11}\\
& \text { Hence } \mathrm{P}_{\mathrm{avg}}=\mathcal{E}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi
\end{align*}
$$

