Lecture 19

■ In this lecture we will look at:

- Alternating current.
- Resistive loads and phasors.
- Capacitive loads and phasors.
- Inductive loads and phasors.
- After this lecture, you should be able to answer the following questions:
- Write down the equations which define the capacitive and inductive reactances. In what units are these measured?
- Is the reactance of a capacitor largest for high or low frequencies?
- Is the reactance of an inductor largest for high or low frequencies?
- Describe the phase relationships between an AC voltage applied (separately) across a resistor, a capacitor and an inductance and the resulting current in each case.

Alternating Current

- Recall electricity generator, coil rotated in magnetic field.
- Freq. f_{d}, angular freq. $\omega_{\mathrm{d}}=2 \pi \mathrm{f}_{\mathrm{d}}$.
- Get induced emf: $\mathcal{E}(\mathrm{t})=\mathcal{E}_{\mathrm{m}} \sin \omega_{\mathrm{d}} \mathrm{t}$
■ E.g for mains, $\mathcal{E}_{\mathrm{m}}=325 \mathrm{~V}, \mathrm{f}_{\mathrm{d}}=50 \mathrm{~Hz}$

- Need to understand behaviour of electrical devices when driven by emf varying sinusoidally with time.
- This emf will induce current in electrical components.
- Label amplitude of current I.
- May be out of phase with emf, so write $\mathrm{i}=\operatorname{I} \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)$, allowing for phase shift of ϕ w.r.t. driving voltage.
- Consider separately effects of resistive, capacitive and inductive loads.

Resistive Load

- Circuit consists of alternating emf and resistance:

- Using Kirchoff's loop rule, we have: $E-\mathrm{v}_{\mathrm{R}}=0$.
- Inserting the expression for the emf we have $v_{R}=\mathcal{E}_{\mathrm{m}} \sin \omega_{\mathrm{d}} \mathrm{t}$ or, using V_{R} to represent the amplitude of the potential across $R, V_{R}=V_{R} \sin \omega_{d} t$.
- The current through the resistor is given by $\mathrm{i}=\mathrm{v} / \mathrm{R}$, therefore:

$$
\begin{equation*}
\mathrm{i}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}} \sin \omega_{\mathrm{d}} \mathrm{t} \tag{19.2}
\end{equation*}
$$

- We can write this as $i_{R}=I_{R} \sin \omega_{d} t$.
- The amplitudes of the current and voltage are related by:
$\mathrm{V}_{\mathrm{R}}=\mathrm{I}_{\mathrm{R}} \mathrm{R} \quad[19.3]$
- The phase shift $\phi=0$: the voltage across the resistor and the current through it are in phase.
- These relationships apply for all resistors in AC circuits.

Resistive Loads and Phasors

- Plotting the voltage across the resistor and the current through it (using $\mathcal{E}_{\mathrm{m}}=325 \mathrm{~V}$ and $\mathrm{R}=3 \Omega$):

- See the voltage and the current oscillate together, i.e. are in phase.
- The voltage and current can also be represented as phasors.
- Phasors are vectors whose length represents the magnitude of the voltage or current.
- The projection of the phasor on the vertical axis represents the voltage or current at a particular time.
- The phasors rotate in a positive direction (i.e. anticlockwise) around the origin with angular velocity ω_{d}.

Resistive Loads and Phasors

- Static picture phasors for voltage across, and current through, resistor (parameters as before) at time t :

- Allowing the phasors to rotate, we see how they describe the time variation of the current and voltage:

Capacitive Load

- Circuit consists of alternating emf and capacitance:

- Using Kirchoff's loop rule, we have: $E-\mathrm{v}_{\mathrm{C}}=0$.
- Inserting the expression for the emf we have:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{C}}=\mathcal{E}_{\mathrm{m}} \sin \omega_{\mathrm{d}} \mathrm{t} \text { or } \\
& \mathrm{v}_{\mathrm{C}}=\mathrm{V}_{\mathrm{C}} \sin \omega_{\mathrm{d}} \mathrm{t} \tag{19.4}
\end{align*}
$$

- From the definition of capacitance:

$$
\mathrm{q}_{\mathrm{C}}=\mathrm{Cv}_{\mathrm{C}}=\mathrm{CV}_{\mathrm{C}} \sin \omega_{\mathrm{d}} \mathrm{t}
$$

- From this we can find the current:

$$
\mathrm{i}_{\mathrm{C}}=\frac{\mathrm{dq}_{\mathrm{C}}}{\mathrm{dt}}=\omega_{\mathrm{d}} \mathrm{CV}_{\mathrm{C}} \cos \omega_{\mathrm{d}} \mathrm{t} .
$$

- Introduce the capacitive reactance:
$X_{C}=\frac{1}{\omega_{d} C}($ unit $\Omega)$
- Using the substitution $\cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)$ the expression for i_{C} becomes:
$\mathrm{i}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{X}_{\mathrm{C}}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}+\frac{\pi}{2}\right)$.
- Writing this in our standard form,
$\mathrm{i}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)$
with $\phi=-\pi / 2$ and $\mathrm{V}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}} \mathrm{X}_{\mathrm{C}}$

Phasors for Capacitive Loads

- Plotting the voltage across the inductor and the current through it (using $\mathcal{E}_{\mathrm{m}}=325 \mathrm{~V}$ and $\mathrm{C}=1 \mathrm{mF}$):

- We see the current leads the voltage by $\pi / 2$, (i.e. current reaches peak before voltage).
- In terms of phasors, static picture:

Phasors for Capacitive Loads

- Animation of phasors for capacitive loads:

Inductive Load

- Circuit consists of alternating emf and inductance:

- Using Kirchoff's loop rule, we have: $E-V_{L}=0$.
- Inserting the expression for the emf we have:

$$
\begin{align*}
& \mathrm{v}_{\mathrm{L}}=\mathcal{E}_{\mathrm{m}} \sin \omega_{\mathrm{d}} \mathrm{t} \text { or } \\
& \mathrm{v}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}} \sin \omega_{\mathrm{d}} \mathrm{t} \tag{19.7}
\end{align*}
$$

- From the definition of inductance:

$$
\mathrm{v}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}} .
$$

- We thus have: $\frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{L}} \sin \omega_{\mathrm{d}} \mathrm{t}$.
- $\mathrm{i}_{\mathrm{L}}=\int \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}} \mathrm{dt}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{L}} \int \sin \omega_{\mathrm{d}} \mathrm{tdt}=-\frac{\mathrm{V}_{\mathrm{L}}}{\omega_{\mathrm{d}} \mathrm{L}} \cos \omega_{\mathrm{d}} \mathrm{t}$.
- Introduce the inductive reactance: $\mathrm{X}_{\mathrm{L}}=\omega_{\mathrm{d}} \mathrm{L}$ (units Ω)
- Using the substitution $-\cos \theta=\sin \left(\theta-\frac{\pi}{2}\right)$ the expression for i_{L} becomes:
$\mathrm{i}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{L}}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\frac{\pi}{2}\right)$.
- Writing this in our standard form,
$\mathrm{i}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}-\phi\right)$
with $\phi=\pi / 2$ and $\mathrm{V}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \mathrm{X}_{\mathrm{L}}$

Inductive Loads and Phasors

- Plotting the voltage across the resistor and the current through it (using $\mathcal{E}=325 \mathrm{~V}$ and $\mathrm{L}=10 \mathrm{mH}$):

- We see the current lags the voltage by $\pi / 2$, (i.e. current reaches peak after voltage).
- In terms of phasors, static picture:

Phasors for Inductive Loads

- Animation of phasors for inductive loads:

- Mnemonics for remembering phase relationships etc:

C , i leads v
i lags v, L

- ELI positively is the ICE man. (i.e. E leads I for L, which has +ive phase, and I leads \mathcal{E} for C).
- $\quad X_{C}=\omega_{d} C$ or $1 / \omega_{d} C$? Remember that C is in Cellar, i.e. in the denominator.

