Lecture 18

- In this lecture we will look at:
 - Circuits containing capacitance and inductance.
 - Charge current and energy oscillations.
 - LCR circuits.
 - Damped charge, current and energy oscillations.

- After this lecture, you should be able to answer the following questions:
- Write down the differential equation describing the charge oscillations of a circuit containing an inductance and a capacitance.
- How does this equation change if a series resistance is introduced to the circuit?
- Explain the behaviour of a lightly damped series LCR circuit, starting from the point at which the capacitor is charged and there is no current flowing in the circuit.

Electromagnetic Oscillations

 Look at circuits containing both capacitance and inductance.

• Have shown that energy stored in a capacitor and inductor given by:

•
$$U_E = \frac{q^2}{2C}$$
.
• $U_B = \frac{Li^2}{2}$.

- If start with capacitor charged, have energy in E field, energy density: $u_E = \frac{1}{2} \varepsilon_0 E^2$.
- Capacitor will discharge through inductor.
- Current will cause build up of magnetic field, energy then stored in B field, energy density:

$$u_{\rm B} = \frac{{\rm B}^2}{2\mu_0}.$$

- B field will then decay, inducing current and charging up capacitor...
- Note, using small letters for varying quantities (e.g. charge q) and large letters for constants (e.g. amplitude of charge oscillations, Q).

Electromagnetic Oscillations

Energy in LC Circuit

- Total energy in L and C is: $U = U_{B} + U_{E} = \frac{Li^{2}}{2} + \frac{q^{2}}{2C}.$
- As no resistance in circuit, no energy is dissipated, that is:
 - $\frac{dU}{dt} = \frac{d}{dt} \left(\frac{\mathrm{Li}^2}{2} + \frac{q^2}{2\mathrm{C}} \right) = \mathrm{Li}\frac{\mathrm{di}}{\mathrm{dt}} + \frac{q}{\mathrm{C}}\frac{\mathrm{dq}}{\mathrm{dt}} = 0.$
- Making the substitutions:
 - $i = \frac{dq}{dt}$ and $\frac{di}{dt} = \frac{d^2q}{dt^2}$,

we then have:

$$L\frac{d^{2}q}{dt^{2}} + \frac{1}{C}q = 0$$
 [18.1]

This differential equation describes the oscillations of the LC circuit.

- Try solution $q = Q \cos(\omega t + \phi)$ [18.2]
- Calculate derivatives: $\frac{dq}{dt} = -Q\omega \sin(\omega t + \phi),$ $\frac{d^2q}{dt^2} = -Q\omega^2 \cos(\omega t + \phi).$ Substitute into differential equation:

$$L\frac{d^2q}{dt^2} + \frac{1}{C}q = 0$$

LC

$$\Rightarrow -\omega^{2}LQ\cos(\omega t + \phi) + \frac{Q}{C}\cos(\omega t + \phi) = 0$$

or
$$\left(-\omega^2 L + \frac{1}{C}\right) Q \cos(\omega t + \phi) = 0$$

 $\Rightarrow \omega^2 = \frac{1}{C}$ [18.3]

Charge and Current Oscillations

- Hence $q = Q \cos(\omega t + \phi)$ is solution of $L \frac{d^2 q}{dt^2} + \frac{1}{C}q = 0$ provided $\omega = \frac{1}{\sqrt{LC}}$.
- Thus the charge stored on the capacitor exhibits sinusoidal oscillations with frequency

$$f = \frac{1}{2\pi\sqrt{LC}}.$$

- Current in circuit is given by $i = \frac{dq}{dt} = -Q\omega \sin(\omega t + \phi)$ [18.4] $\underline{q(t)}$ (C)
- Hence current also shows sinusoidal oscillations, with amplitude Qω.

Graph of charge stored on capacitor and current in circuit, with $C = 10^{-6}$ F, L = 2 H (gives f = 112 Hz), charge on capacitor at t = 0 is 10⁻⁵ C (i.e. initial potential 10 V):

Energy Oscillations

- Can now check that total energy is conserved.
- Look at energy stored in E field in capacitor...

$$U_{\rm E} = \frac{q^2}{2C} = \frac{Q^2}{2C}\cos^2(\omega t + \phi)$$

...and at energy stored in B field in inductor:

$$U_{\rm B} = \frac{{\rm Li}^2}{2} = \frac{{\rm L}\omega^2 {\rm Q}^2 \sin^2 (\omega t + \phi)}{2}.$$

Substituting for ω gives: $U_{\rm B} = \frac{{\rm Li}^2}{2} = \frac{{\rm Q}^2}{2{\rm C}} \sin^2(\omega t + \phi).$

RLC Circuit

Now include resistance in the circuit:

The total electromagnetic energy, $U = U_E + U_B$, is now no longer constant as it is converted to heat in the resistor at a rate given by i²R. That is:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \mathrm{Li}\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{\mathrm{q}}{\mathrm{C}}\frac{\mathrm{d}q}{\mathrm{d}t} = -\mathrm{i}^{2}\mathrm{R}.$$

Substituting for the current as before: $L\frac{d^{2}q}{dt^{2}} + R\frac{dq}{dt} + \frac{1}{C}q = 0 \qquad [18.5]$

The solution to this equation is:

$$q = Q \exp\left[-\frac{Rt}{2L}\right] \cos(\omega' t + \phi),$$
where $\omega' = \sqrt{\omega^2 - (R/2L)^2}$ [18.6]

The amplitude of the charge oscillations decreases with time (i.e. they are damped) according to $Qexp\left[-\frac{Rt}{2L}\right]$.

Damped Charge and Current Oscillations

- The (angular) frequency of the oscillations is also decreased.
- Consider situations in which $\omega \approx \omega'$, this is the case when the damping is not too strong.

With the same L and C values as before, adding a 200 Ω resistor, the current and charge behave as below:

Damped Energy Oscillations

The expression for U_B is a little messy, but adding this and the total electromagnetic energy U to the plot gives:

