
Lecture 18

■ In this lecture we will look at:

♦ Circuits containing capacitance 

and inductance.

♦ Charge current and energy 

oscillations.

♦ LCR circuits.

♦ Damped charge, current and 

energy oscillations.

■ After this lecture, you should be able 

to answer the following questions:

■ Write down the differential equation 

describing the charge oscillations of a 

circuit containing an inductance and a 

capacitance.

■ How does this equation change if a 

series resistance is introduced to the 

circuit?

■ Explain the behaviour of a lightly 

damped series LCR circuit, starting 

from the point at which the capacitor 

is charged and there is no current 

flowing in the circuit.



Electromagnetic Oscillations

■ Look at circuits containing both 

capacitance and inductance.

■ Have shown that energy stored in a 

capacitor and inductor given by:

♦

♦

■ If start with capacitor charged, have 

energy in E field, energy density:

■ Capacitor will discharge through 

inductor.

■ Current will cause build up of 

magnetic field, energy then stored in 

B field, energy density:

■ B field will then decay, inducing 

current and charging up capacitor...

■ Note, using small letters for varying 

quantities (e.g. charge q) and large 

letters for constants (e.g. amplitude of 

charge oscillations, Q).
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Electromagnetic Oscillations

■ 1

■ 2

■ 3

■ 4



Energy in LC Circuit

■ Total energy in L and C is:

■ As no resistance in circuit, no energy 

is dissipated, that is:

■ Making the substitutions: 

we then have:

■ This differential equation describes 

the oscillations of the LC circuit.

■ Try solution q = Q cos (wt +f)     [18.2]

■ Calculate derivatives:

■ Substitute into differential equation:
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Charge and Current Oscillations

■ Hence q = Q cos (wt +f) is solution of

■ Thus the charge stored on the 

capacitor exhibits sinusoidal 

oscillations with frequency 

■ Current in circuit is given by 

■ Hence current also shows sinusoidal 

oscillations, with amplitude Qw.

■ Graph of charge stored on capacitor 

and current in circuit, with C = 10-6 F, 

L = 2 H (gives f = 112 Hz), charge on 

capacitor at t = 0 is 10-5 C (i.e. initial 

potential 10 V):
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Energy Oscillations

■ Can now check that total energy is 

conserved.

■ Look at energy stored in E field in 

capacitor...

■ ...and at energy stored in B field in 

inductor:

■ Substituting for w gives:

■ Plotting these quantities and their 

sum, U, for the values of C, L and Q 

used previously gives: 

■ Notice total energy looks constant as 

expected: exercise, prove this!
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RLC Circuit

■ Now include resistance in the circuit:

■ The total electromagnetic energy, 

U = UE + UB, is now no longer 

constant as it is converted to heat in 

the resistor at a rate given by i2R.

■ That is:

■ Substituting for the current as before:

■ The solution to this equation is:

■ The amplitude of the charge 

oscillations decreases with time (i.e. 

they are damped) according to
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Damped Charge and Current Oscillations

■ The (angular) frequency of the 

oscillations is also decreased. 

■ Consider situations in which 

, this is the case when the 

damping is not too strong.

■ The current is given by:

■ With the same L and C values as 

before, adding a 200 W resistor, the 

current and charge behave as below: 

w  w

 

 

 

dq d Rt
Qexp cos t

dt dt 2L

R Rt
Qexp cos t

2L 2L

Rt
Qexp sin t .

2L

    w  f
  

     w  f
  

  w  w  f
  

(s)

(A)

(C)

0 0.02 0.04 0.06

1 10
5

0

1 10
5

0.01

0

0.01

q t( ) i t( )

t



Damped Energy Oscillations

■ The energy stored in the electric field 

of the capacitor is given by: 

■ The expression for UB is a little 

messy, but adding this and the total 

electromagnetic energy U to the plot 

gives:

2 2
2

E

q Q Rt
U exp cos ( t ).

2C 2C L

     w  f
  

0 0.02 0.04 0.06
0

2 10
5

4 10
5

6 10
5

UE t( )

t (s)

(J)

0 0.02 0.04 0.06
0

2 10
5

4 10
5

6 10
5

UE t( )

UB t( )

U t( )

t (s)

(J)


