Lecture 17

■ In this lecture we will look at:

- Electricity generators.
- Inductors and inductance.
- Inductance of a solenoid.
- RL circuits.
- Energy stored in a B field.
- Energy density of a B field.
- Mutual inductance.
- After this lecture, you should be able to answer the following questions:
- What is the emf induced in a coil of area $1 \mathrm{~cm}^{2}$ consisting of 100 turns of wire rotating with a frequency of 60 Hz in a uniform magnetic field of strength 0.5 T .
- How is inductance defined and what is the inductance of a coil with N turns?
- Describe the current that flows in a series circuit containing a resistance, an inductance, a battery and a switch from the point at which the switch is closed.

Electricity Generators

- Recall electric motor:

- Force on current carrying wire in magnetic field causes rotation of coil.
- Now use external force to rotate the coil in the magnetic field.
- Frequency f, angular frequency $\omega=2 \pi f$.
- Flux through N loops of coil given by: $\Phi_{\mathrm{B}}=\int \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\mathrm{BAN} \cos \theta$ [17.1]
- Induced emf from Faraday's law, $\mathcal{E}=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{BAN} \cos \omega \mathrm{t}$

$$
\begin{equation*}
=\mathrm{BAN} \omega \sin \omega \mathrm{t} \tag{17.2}
\end{equation*}
$$

■ $\mathrm{N}=1000, \mathrm{~B}=1 \mathrm{~T}, \mathrm{~A}=4 \times 10^{-4} \mathrm{~m}^{2}, \mathrm{f}=50 \mathrm{~Hz}$.

Inductors and Inductance: Inductance of Solenoid

- If a current i produces a magnetic flux of Φ_{B} in a loop, the inductance is defined to be:

$$
\begin{equation*}
\mathrm{L}=\frac{\Phi_{\mathrm{B}}}{\mathrm{i}} \tag{17.3}
\end{equation*}
$$

- Unit is the henry $\left(\mathrm{H}=\mathrm{T} \mathrm{m}^{2} \mathrm{~A}^{-1}\right)$.
- If the inductor is a coil made of N loops:

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{N} \Phi_{\mathrm{B}}}{\mathrm{i}} \tag{17.4}
\end{equation*}
$$

- (All the windings are linked by the shared flux Φ_{B}, the product $\mathrm{N} \Phi_{\mathrm{B}}$ is called the magnetic flux linkage.)
- Assume no magnetic materials in vicinity of inductors considered in following.
- Consider solenoid with n turns per unit length, area A.
- Magnetic field, $B=\mu_{0}$ in.
- For length x far from ends,

$$
N \Phi_{\mathrm{B}}=(\mathrm{nx})(\mathrm{BA}) .
$$

- Hence:

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{N} \Phi_{\mathrm{B}}}{\mathrm{i}}=\frac{(\mathrm{nx})(\mathrm{BA})}{\mathrm{i}} \\
& =\frac{(\mathrm{nx})\left(\mu_{0} \mathrm{in}\right)(\mathrm{A})}{\mathrm{i}}=\mu_{0} \mathrm{n}^{2} \mathrm{xA} .
\end{aligned}
$$

- The inductance per unit length (far from ends of solenoid) is:

$$
\frac{\mathrm{L}}{\mathrm{x}}=\mu_{0} \mathrm{n}^{2} \mathrm{~A} .
$$

- For solenoid with total length $X \gg r$:
$\mathrm{L}=\mu_{0} \mathrm{n}^{2} \mathrm{AX}$

Inductors and Inductance

■ Current change (e.g. through solenoid) can cause change of magnetic flux and hence induce emf.

$$
E=-\frac{\mathrm{d} \Phi_{\mathrm{B}}}{\mathrm{dt}}=-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{iL}=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}
$$

- This is self-inductance, current i changes and self-induced emf appears across solenoid.

- Direction of induced emf given by Lenz's law.
- In example, emf must oppose decrease in current, so tends to produce current in indicated direction.
- Potential across inductor, V_{L}, is equal to \mathcal{E}_{L} if resistance of inductor is negligible.
- If inductance has internal resistance r, split into "perfect" inductor and resistor:

RL Circuits

■ Consider following circuit:

- Use Kirchoff's loop rule:

$$
\begin{align*}
& -\mathrm{iR}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{E}=0 \text { or } \\
& \mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{iR}=\mathrm{E} \tag{17.7}
\end{align*}
$$

- (Compare with equation for RC circuit!)
- Solution:

$$
\begin{equation*}
\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}}\left(1-\exp \left(-\frac{\mathrm{Rt}}{\mathrm{~L}}\right)\right) \tag{17.8}
\end{equation*}
$$

- Inductive time constant
$\tau=\mathrm{L} / \mathrm{R} \quad[17.9]$
- Move switch to position b, Kirchoff's loop rule then gives:

$$
-\mathrm{i} \mathrm{R}-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=0 \text { or }
$$

$$
\begin{equation*}
\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{iR}=0 \tag{17.10}
\end{equation*}
$$

- Solution now:

$$
\begin{equation*}
\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}} \exp \left(-\frac{\mathrm{Rt}}{\mathrm{~L}}\right) \tag{17.11}
\end{equation*}
$$

RL Circuits

- Example, $\mathrm{R}=1000 \Omega, \mathrm{~L}=2 \mathrm{H}$, $\mathcal{E}=10 \mathrm{~V}, \tau=\mathrm{L} / \mathrm{R}=0.002 \mathrm{~s}$.
- Switch initially in position a then move to position b after $5 \tau=0.01 \mathrm{~s}$.
- Look at current through and potential across inductor.

■ If move switch after only $2 \tau=0.004 \mathrm{~s}$:

Energy Stored in a Magnetic Field

- Energy can be stored in a B field.
- Consider again RL circuit:

- Differential equation describing circuit:

$$
\mathcal{E}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{iR}
$$

- Multiply each side by i:
$E \mathrm{i}=\mathrm{Li} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}^{2} \mathrm{R}$.
- Now if charge dq passes through battery in time dt, rate at which work is done on it is $(\mathcal{E d q}) / \mathrm{dt}=E \operatorname{i}$, so LHS is rate at which battery delivers energy to rest of circuit.
- Term $\mathrm{i}^{2} \mathrm{R}$ is rate at which energy dissipated in resistor.
- Remainder must be rate at which energy is stored in magnetic field, i.e. $\frac{\mathrm{dU}_{\mathrm{B}}}{\mathrm{dt}}=\mathrm{Li} \frac{\mathrm{di}}{\mathrm{dt}}$.

Energy Stored in, and Energy Density of, B Field

- Rewriting

$$
\frac{\mathrm{dU}_{\mathrm{B}}}{\mathrm{dt}}=\mathrm{Li} \frac{\mathrm{di}}{\mathrm{dt}},
$$

we get $\mathrm{dU}_{\mathrm{B}}=\mathrm{Lidi}$.

- This can then be integrated:

$$
\begin{aligned}
& \int \mathrm{dU}_{\mathrm{B}}=\int \mathrm{Lidi} \\
& \Rightarrow \mathrm{U}_{\mathrm{B}}=\frac{1}{2} \mathrm{Li}^{2}+\text { const. }
\end{aligned}
$$

- Setting the energy to be zero for zero magnetic field (i.e. zero current):

$$
\mathrm{U}_{\mathrm{B}}=\frac{1}{2} \mathrm{Li}^{2} \quad[17.12]
$$

- Compare with energy stored in charged capacitor:

$$
\mathrm{U}_{\mathrm{E}}=\frac{1}{2} \mathrm{CV}^{2} .
$$

- Consider length x far from ends of solenoid of volume Ax with n turns per unit length.
- The energy stored in this volume is:

$$
\mathrm{u}_{\mathrm{B}}=\frac{\mathrm{U}_{\mathrm{B}}}{\mathrm{Ax}}=\frac{\frac{1}{2} \mathrm{Li}^{2}}{\mathrm{Ax}}=\frac{\mathrm{L}}{\mathrm{x}} \frac{\mathrm{i}^{2}}{2 \mathrm{~A}} .
$$

- Now

$$
\frac{\mathrm{L}}{\mathrm{x}}=\mu_{0} \mathrm{n}^{2} \mathrm{~A} \text { so } \mathrm{u}_{\mathrm{B}}=\frac{1}{2} \mu_{0} \mathrm{n}^{2} \mathrm{i}^{2} .
$$

- We also know $B=\mu_{0}$ in, so energy density:

$$
\begin{equation*}
\mathrm{u}_{\mathrm{B}}=\frac{\mathrm{B}^{2}}{2 \mu_{0}} \tag{17.13}
\end{equation*}
$$

- Compare with energy density of electric field:

$$
\mathrm{u}_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} .
$$

Mutual Induction

- Consider two coils close together.

- Current in coil 1 induces magnetic field which passes through (links) coil 2.
- If change current through $1, \mathrm{i}_{1}$, change field and hence flux through coil 2 , inducing emf in coil 2 .
- Flux through coil 2 is Φ_{21} (i.e. flux through 2 generated by current in 1).
- Define mutual inductance:

$$
\begin{equation*}
\mathrm{M}_{21}=\frac{\Phi_{21}}{\mathrm{i}_{1}} \tag{17.14}
\end{equation*}
$$

- Rewriting the above: $\mathrm{M}_{21} \mathrm{i}_{1}=\Phi_{21}$.
- Now vary i_{1} with time:

$$
\mathbf{M}_{21} \frac{\mathrm{di}_{1}}{\mathrm{dt}}=\frac{\mathrm{d} \Phi_{21}}{\mathrm{dt}}
$$

- Faraday's law tells us RHS is magnitude of emf appearing across coil 2, so we write (with - sign due to Lenz's law):

$$
\mathcal{E}_{2}=-\mathrm{M}_{21} \frac{\mathrm{di}_{1}}{\mathrm{dt}} .
$$

Mutual Induction

- Can make same argument for emf induced in coil 1 due to current in coil 2, find:
$\mathcal{E}_{1}=-\mathrm{M}_{12} \frac{\mathrm{di}_{2}}{\mathrm{dt}}$.
- The emf induced in either coil is proportional to the change in current in the other coil.
■ It turns out that $\mathrm{M}_{12}=\mathrm{M}_{21} \equiv \mathrm{M}$.
- Hence we can write:

$$
\begin{align*}
& \mathcal{E}_{1}=-\mathrm{M} \frac{\mathrm{di} i_{2}}{\mathrm{dt}} \text { and } \\
& \mathcal{E}_{2}=-\mathrm{M} \frac{\mathrm{di}_{1}}{\mathrm{dt}} \tag{17.15}
\end{align*}
$$

- The unit of mutual inductance is the same as that of self inductance, the henry.

