Lecture 15

- In this lecture we will look at:
- Ampere's Law.
- Magnetic fields associated with straight wires.
- B fields in solenoids and toroids.
- The magnetic dipole due to a current loop.
- After this lecture, you should be able to answer the following questions:
- State Ampere's Law in words and as a mathematical formula.
- Using Ampere's Law, determine the strength of the magnetic field in the centre of a long, current carrying solenoid.
- Explain how the direction of the magnetic field due to a current loop can be determined.

Ampere's Law

- Despite the name, this law was first deduced by Maxwell!

- Can be written:

$$
\oint \mathrm{B} \cos \theta \mathrm{ds}=\mu_{0} \mathrm{i}_{\mathrm{enc}} .
$$

- Determine sign of current using yet another right hand rule.
- Curl right hand round amperian loop so fingers point along direction of integration, currents in direction of thumb assigned +ive sign, in opposite direction-ive sign.
- Now have
$\oint B \cos \theta d s=\mu_{0}\left(i_{1}-i_{2}\right)$.
- Ampere's law:

$$
\begin{equation*}
\oint \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{ }=\mu_{0} \mathrm{i}_{\mathrm{enc}} \tag{15.1}
\end{equation*}
$$

Magnetic Field Outside/Inside Long Straight Wire

- Outside wire:
- Inside wire:

- $\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=\oint \mathrm{B} \cos \theta \mathrm{ds}=\mathrm{B} \oint \mathrm{ds}=\mathrm{B}(2 \pi \mathrm{r})$.
- Hence: $2 \pi \mathrm{rB}=\mu_{0} \mathrm{i}$

$$
\begin{equation*}
\Rightarrow B=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}} \tag{15.2}
\end{equation*}
$$

$$
\begin{equation*}
\square 2 \pi \mathrm{rB}=\mu_{0} \mathrm{i}_{\mathrm{enc}}=\mathrm{i} \mu_{0} \frac{\pi \mathrm{r}^{2}}{\pi \mathrm{R}^{2}} \tag{15.3}
\end{equation*}
$$

- Hence $B=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}^{2}} \mathrm{r}$

Field in a Solenoid

- Magnetic field is nearly uniform in the centre of a long solenoid.
- Field outside is relatively weak.

- Use Ampere's law to determine field

00000000000000
Central part of solenoid

- Using this amperian loop:
$\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\mu_{0} \mathrm{i}_{\mathrm{enc}}$.

Field in Solenoid

- But the integral can be split up into four parts:

$$
\oint \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{ }=\int_{\mathrm{a}}^{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{~B}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}}+\int_{\mathrm{b}}^{\mathrm{c}} \stackrel{\rightharpoonup}{\mathrm{~B}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{ }
$$

$$
+\int_{\mathrm{c}}^{\mathrm{d}} \stackrel{\rightharpoonup}{\mathrm{~B}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{ }+\int_{\mathrm{d}}^{\mathrm{a}} \stackrel{\rightharpoonup}{\mathrm{~B}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}}
$$

- No of turns per unit length n.
- $\int_{0}^{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=\mathrm{Bh}$.
- $\int_{\mathrm{b}}^{\mathrm{c}} \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=\int_{\mathrm{d}}^{\mathrm{a}} \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=0$.
- Because the path c to d is a long way from the solenoid, the field is negligible, hence:
$\int^{\mathrm{d}} \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=0$.
- ${ }^{\text {c }}$ The result is thus: $\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=\mathrm{Bh}$.
- The enclosed current is: $\mathrm{i}_{\mathrm{enc}}=\mathrm{i}(\mathrm{nh})$.
- Hence:

$$
\begin{gather*}
\oint \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{=} \mu_{0} \mathrm{i}_{\mathrm{enc}} \Rightarrow \mathrm{Bh}=\mu_{0} \mathrm{inh} \\
\text { or } \mathrm{B}=\mu_{0} \mathrm{in} \tag{15.4}
\end{gather*}
$$

Field in Toroid

- Toroid is solenoid bent into ring:

- From Ampere's law (amperian loop at radius r traversed in clockwise direction) we get:

$$
\begin{align*}
& \oint \stackrel{\rightharpoonup}{\mathrm{B}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}}=\mu_{0} \mathrm{i}_{\mathrm{enc}} \\
& \Rightarrow \mathrm{~B}(2 \pi \mathrm{r})=\mu_{0} \mathrm{iN} \\
& \text { or } \mathrm{B}=\frac{\mu_{0} \mathrm{~N}}{2 \pi \mathrm{r}} \tag{15.5}
\end{align*}
$$

- Note that field is not uniform as in solenoid, but decreases with increasing radius.
- Field outside toroid (i.e. $\mathrm{r}<\mathrm{a}$ or $r>b$ or above or below toroid) is zero.

■ Total number of turns N .

Current Loop as Magnetic Dipole

- Have seen torque on current carrying loop in B field can be expressed in terms of a magnetic dipole:
$\vec{\tau}=\vec{\mu} \times \overrightarrow{\mathrm{B}}$.
- As "loop" configuration is of importance (electrons in atoms!), now calculate field due to loop.
- Use Biot-Savart law as opposed to Ampere's law due to limited symmetry.
- (Have already calculated the field at the centre of the loop: $B=\mu_{0} \mathrm{i} / 2 \mathrm{R}$.)
- Fields due to wire, current loop and

Current Loop as Magnetic Dipole

- Diagram shows rear half of current loop, radius R, loop perpendicular to transparency:

- Angle θ between $\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}$ and $\stackrel{\rightharpoonup}{\mathrm{r}}$ is 90°.
- Biot-Savart law:

$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{ids} \sin \theta}{\mathrm{r}^{2}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{ids}}{\mathrm{r}^{2}} .
$$

- Transverse field components cancel.
$\mathrm{dB}_{\mathrm{L}}=\frac{\mu_{0} \mathrm{i} \cos \alpha \mathrm{ds}}{4 \pi \mathrm{r}^{2}}$.
- Use $\mathrm{r}^{2}=\mathrm{R}^{2}+\mathrm{z}^{2}$ and $\cos \alpha=\frac{\mathrm{R}}{\sqrt{\mathrm{R}^{2}+\mathrm{z}^{2}}}$.
- Hence: $\mathrm{dB}_{\mathrm{L}}=\frac{\mu_{0} \mathrm{iR}}{4 \pi\left(\mathrm{R}^{2}+\mathrm{z}^{2}\right)^{\frac{3}{2}}} \mathrm{ds}$
and $B=\int d B_{L}=\frac{\mu_{0} i R}{4 \pi\left(R^{2}+z^{2}\right)^{\frac{3}{2}}} \int \mathrm{ds}$
$=\frac{\mu_{0} i R \times 2 \pi R}{4 \pi\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}$.

Current Loop as Magnetic Dipole

- For points along the z axis far from the loop we have:
$B \approx \frac{\mu_{0} \mathrm{i}^{2}}{2 \mathrm{z}^{3}}$.
■ Using $\mathrm{A}=\pi \mathrm{R}^{2}: \quad \mathrm{B} \approx \frac{\mu_{0}}{2 \pi} \frac{\mathrm{iA}}{\mathrm{z}^{3}}$.
- If we allow the coil to have N turns this becomes:

$$
\mathrm{B} \approx \frac{\mu_{0}}{2 \pi} \frac{\mathrm{NiA}}{\mathrm{z}^{3}} .
$$

■ Writing $\mu=$ NiA, we have:

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\mathrm{B}} \approx \frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{\mathrm{z}^{3}} \tag{15.6}
\end{equation*}
$$

- Curl RH fingers round loop in direction of i, thumb gives direction of B field in loop and of dipole.
- If set $\mathrm{z}=0$ we get agreement with previous calculation using Ampere's Law:

$$
\mathrm{B}=\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}} .
$$

