Lecture 12

- In this lecture we will look at:
 - Magnetic fields.
 - Force on a charged particle in a magnetic field.
 - Magnetic field lines.
 - Circulating charged particles.
 - Magnets in particle physics.
 - The Aurora Australis and the Aurora Borealis.

- After this lecture, you should be able to answer the following questions:
- How does a magnetic field influence
 a) a stationary charged particle and b)
 a moving charged particle?
- Use field lines to illustrate the field due to a bar magnet.
- Explain how the mechanism that gives rise to the Aurora Borealis.

Magnetic Fields

- As soon as we start considering moving electric charges, we are faced with a new phenomenon: magnetism.
- Two comments:
 - Not really new phenomenon! (See "Relativity and Magnetism" in Lecture 14.)
 - Fields due to magnets i.e. magnetic materials – are result of electric currents in the materials, e.g. electrons orbiting nuclei.
- The strength and direction of an electric field was defined in terms of the force it caused on a test charge: $\vec{F}_E = q\vec{E}.$

- No magnetic monopoles, so cannot quite do same for magnetic field.
- Magnetic fields have no effect on stationary electric charges, but do cause force on moving charges.
- Magnitude and direction of magnetic force found to depend on velocity of charge (speed and direction!).

Force on a Charged Particle in a Magnetic Field

- This defines strength and direction of the magnetic ("B") field.
- More descriptively, the direction of the B field is that in which the charged particle experiences no force.
- The strength of the B field is

$$\left| \vec{\mathbf{B}} \right| = \frac{F_{\text{B}}}{\left| q \right| v}$$
, when $\vec{\mathbf{v}} \perp \vec{\mathbf{B}}$.

- Sense (which way along direction vector) from right hand rule:
 - ♦ 1st finger: velocity (+ive charge).
 - 2nd finger: B field.
 - Thumb: motion (i.e. force).

Work out the direction of the B field in this bubble chamber photograph, assuming that the spiralling track is that of an electron:

Force on a Charged Particle in a Magnetic Field

- Another way of thinking of the RH rule:
 - Hold your right hand so your extended fingers point along the +ive particle's velocity.
 - Turn your hand so that when you curl your fingers they move towards the direction of the B field.
 - Your thumb is then pointing in the direction of the force.
- And another...
 - Rotate a RH screw from the direction of the velocity towards that of the B field.
 - The screw moves in the direction of the force.

Force on a Charged Particle: Typical Magnetic Fields

Some comments:

- Force is proportional to charge, force on –ive particle opposite to that on +ive particle.
- Force always perpendicular to both particle's velocity and direction of the B field.
- The force doesn't change the speed (and hence kinetic energy) of the particle.
- The unit of magnetic field strength is the Tesla:

 $1T = 1\frac{N}{Cms^{-1}} = 1\frac{N}{Cs^{-1}m} = 1\frac{N}{Am}.$

Older unit, the gauss, 1 T = 10 kG.

Some typical magnetic field values:

Surface of neutron star	10 ⁸ T
Superconducting magnet	10 T
Small bar magnet	10 ⁻² T
At earth's surface	$10^{-4} \text{ T} = 1 \text{ G}$
Interstellar space	10 ⁻¹⁰ T
Magnetically shielded room	10 ⁻¹⁴ T

Magnetic Field Lines

- Represent magnetic field using field lines.
- Direction of the field line gives the direction of the B field.
- Density of the lines represents the magnitude of the field: the closer the lines the stronger the field.

- Video of simulation of one of periodic flips of earth's B field direction (flip takes ~ 1000 years!).
- Earth's magnetic field represented using field lines, blue = inward, yellow = outward lines.

Circulating Charged Particle

- If project beam of particles, into magnetic field with v ⊥ B, magnetic force causes particles to follow circular path, radius r.
- Magnetic force $F_B = qvB$.
- Centripetal force: $F = mr\omega^2 = m\frac{v^2}{r}$.
- Equating these: $qvB = m\frac{v^2}{r}$ $\Rightarrow r = \frac{mv}{qB} = \frac{p}{qB}$ [12.2]

B field directed into transparency.

Circulating Charged Particle

 The period (time for one revolution) is given by speed/distance, i.e.

$$T = \frac{2\pi r}{v} = \frac{2\pi}{v} \frac{mv}{qB} = \frac{2\pi m}{qB}.$$

Frequency given by:
 $f = \frac{1}{v} = \frac{qB}{v}$

T
$$2\pi m$$

Angular frequency:

$$\omega = 2\pi f = \frac{qB}{m} \qquad [12.3]$$

- If there is a component of particle's velocity, v_L, along direction of B field, particles follow helical path.
- Radius of helix given by v_T, transverse component of velocity, pitch by v_L.

Magnets in Particle Physics Detectors

Magnets in Particle Accelerators

 Dipole magnets steer particles around accelerators and quadrupole magnets provide focussing.

Magnetic Bottle

Charged particle can become trapped in non-uniform B field:

 This happens in the magnetic field of the earth, gives rise to Van Allen Radiation Belts (right), Aurora Australis and Aurora Borealis (next slides).

Aurora Australis, Photo from Discovery

Aurora Borealis

Photo: Pekka Parviainen

Aurora Borealis

Photo: Pekka Parviainen

Aurora Borealis

Photo: Pekka Parviainen

Photo: Pekka Parviainen